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Tonal music is a highly structured system that is ubiquitous in our cultural environment. We demonstrate 
the acquisition of implicit knowledge of tonal structure through neural self-organization resulting from 
mere exposure to simultaneous and sequential combinations of tones. In the process of learning, a 
network with fundamental neural constraints comes to internalize the essential correlational structure of 
tonal music. After learning, the network was run through a range of experiments from the literature. The 
model provides a parsimonious account of a variety of empirical findings dealing with the processing of 
tone, chord, and key relationships, including relatedness judgments, memory judgments, and expectan- 
cies. It also illustrates the plausibility of activation being a unifying mechanism underlying a range of 
cognitive tasks. 

Natural environments contain highly structured systems to 
which we are exposed in everyday life. The human brain internal- 
izes these regularities by passive exposure, and the acquired im- 
plicit knowledge influences perception and performance. Aspects 
of language and music provide two examples of highly structured 
systems that may be learned in an incidental manner. In each case, 
there is a paradox. On the one hand, a thorough formal description 
of the structure has proven to be extremely challenging. On the 
other hand, native speakers or nonmusician listeners internalize the 
regularities underlying linguistic or musical structures with appar- 
ent ease. A substantial corpus of research has been devoted to the 
learning process of language, but little has been devoted to the 
learning of music. The central purpose of the present article is to 
investigate how implicit knowledge of some basic features of 
Western musical grammar may be acquired and mentally 
represented. 
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We present a connectionist model that (a) simulates the implicit 
learning of pitch structures occurring in Western harmony and (b) 
accounts for a range of empirical findings in music perception. The 
article is organized in four parts. First, we summarize the regular- 
ities underlying the Western tonal musical system that may be 
internalized by implicit learning and review existing models of 
tonal knowledge presentation. Second, we propose a connectionist 
model, based on self-organizing maps (SOMs), that simulates the 
learning of tonal regularities by mere exposure. Third, we present 
tests of the trained network with experimental tasks on the per- 
ception of tonality. Fourth, we discuss the proposed model and 
some of its future developments. 

I M P L I C I T  L E A R N I N G  O F  R E G U L A R I T I E S  IN 

W E S T E R N  T O N A L  M U S I C  

In the acquisition and representation of knowledge, a distinction 
is made between explicit and implicit. Explicit learning is the 
acquisition of declarative knowledge. This is thought to occur by 
hypothesis testing or rule instruction. Implicit learning is the 
acquisition of knowledge in an incidental manner without com- 
plete verbalizable knowledge of what is learned (Seger, 1994). 
Implicit learning is seen as a fundamental characteristic of the 
cognitive system, enabling the acquisition of highly complex in- 
formation that may not be acquired in an explicit way (Reber, 
1989). Implicit learning processes have been studied in the labo- 
ratory with artificial material based on statistical regularities. One 
of the most frequently used experimental situations consists of 
presenting participants with sequences of events generated by an 
artificially defined grammar. For example, a finite state grammar 
generates complex letter strings based on a restricted set of letters 
(Reber, 1967). After passive exposure to grammatical letter 
strings, participants were better than chance at differentiating new 
grammatical letter strings from new nongrammatical ones. Most 
were unable to explain the rules underlying the grammar in verbal 
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free reports (e.g., Altmann, Dienes, & Goode, 1995; Dienes, 
Broadbent, & Berry, 1991; Reber, 1967, 1989). 

Artificial materials are simpler than environmental sequences of 
events. However, the same basic principles of learning may serve 
as a model for understanding the implicit learning processes in 
natural environments (Winter & Reber, 1994). For example, sev- 
eral studies attempted to bridge implicit learning of artificial 
grammar and language learning. Saffran, Newport, Aslin, Tunick, 
and Barrueco (1997) showed with auditory sequences that partic- 
ipants were able to use the statistical regularities such as transition 
probabilities of syllables. After the presentation of an artificial 
language-like auditory sequence (e.g., bupadapatubitutibu.. .  ), 
children and adults performed above chance in distinguishing 
artificial words (e.g., bupada, patubi) from nonwords. Even a brief 
exposure to a complex natural language induces a sensitivity to 
structural constraints: After a 12-min presentation of a cartoon film 
narrated by a native Mandarin speaker, Dutch adults discriminated 
above chance between real Mandarin words and pseudowords 
(Zwisterlood, 1990, reported by Altmann et al., 1995). Further 
results obtained for children's sensitivity to orthographic regular- 
ities (Pacton, Perruchet, Fayol, & Cleeremans, in press) support 
the extension of implicit learning conclusions issued from artificial 
laboratory research to natural material. 

In several domains, implicit learning has been studied with both 
artificial and natural events. In the music domain, only a few 
studies investigated implicit learning directly with artificial strings 
of musical events (Bigand, Perruchet, & Boyer, 1998). However, 
many studies addressed this issue indirectly with music processing 
(see Dowling & Harwood, 1986, for a review). Western musical 
grammar is more complex than the finite state grammars used in 
implicit learning studies. It may be conceived of as a three-level 
hierarchical grammar that generates strong regularities in musical 
pieces. Let us consider some of the most basic rules and 
regularities. 1 

In Western music, a restricted set of 12 pitch classes (referred to 
as the tones C, C~/D~,, D, D~/E~, E, F, F¢/Gb, G, GII/Ab, A, 
A~/B b, B) are combined in highly constrained ways. This set 
of 12 tones is organized in subsets of seven, called diatonic scales. 
Depending on the pattern of intervals separating the seven tones, 
diatonic scales may be major or minor. Applying the two diatonic 
scales to each of the 12 pitch classes leads to the distinction of 12 
major and 12 minor musical keys. The tones that form a musical 
key (e.g., B-CtI-D~-E-F~-G~-A~) are more likely to co-occur in 
Western melodies than tones that do not form a musical key (e.g., 
B-C-D~-E-FII-G~-A). For each scale, seven diatonic chords may 
be defined on each of the seven degrees of the scale according to 
specific harmonic rules. A chord is a simultaneity of three tones, 
usually called the root, third, and fifth. In the major keys, the chord 
built on the first, fourth, and fifth scale degree (I, IV, and V) are 
major, those built on the second, third, and sixth scale degree are 
minor (ii, iii, vi), and the chord built on the seventh degree is 
diminished (vii°). 2 Chords form a second order of musical units, 
and their occurrence is strongly constrained by Western musical 
grammar. Chords belonging to the same musical key are more 
likely to co-occur in a given musical piece than chords belonging 
to different keys. 

Keys define a third order of musical units. Some keys share 
numerous chords and tones. For example, the C-major key shares 
four chords and six tones with the G-major key, two chords and 

five tones with the D-major key, and only one tone with the 
Fit-major key. Keys sharing chords or tones are said to be har- 
monically related. The strength of these harmonic relationships 
depends on the number of shared chords or tones. In music theory, 
keys are conceived spatially as a circle, referred to as the cycle of 
fifths (Figure 1). The number of steps separating two keys on this 
circle (whatever the direction of the rotation) defines their har- 
monic distance. These interkey distances form the basis for strong 
regularities in pieces of Western music. Key changes are more 
likely to occur between closely related keys (e.g., C and F or G 
major) than between less related ones (e.g., C and F~ major). 
Interkey distances are also defined between major and minor keys. 
A major key (e.g., C major) is harmonically related to both its 
relative minor key (a minor) and its parallel minor key (c minor). 
These multilevel relations among tones and chords, chords and 
keys, and major and minor keys define a complex set of possible 
relations between musical events (see Krumhansl, 1990; Lerdahl, 
1988), and they strongly constrain the transition probabilities be- 
tween musical events as a piece unfolds (Franc~s, 1958; Piston, 
1978). 

Another important feature of Western musical grammar is that 
tones and chords have different structural functions within a key. 
According to Meyer (1956), "In the major mode in Western music 
the tonic tone 3 is the tone of ultimate rest toward which all other 
tones tend to move. On the next higher level the third and fifth of 
the scale, though active melodic tones relative to the tonic, join the 
tonic as structural tones; and all the other tones, whether diatonic 
or chromatic, tend toward one of these" (pp. 214-215). These 
differences in musical functions create within-key hierarchies. 
Interestingly, within-key hierarchies are strongly correlated with 
the frequency of occurrence of tones in Western musical pieces. 
Tones that occur with greater frequency (the tonic, the fifth, and, 
to a lesser extent, the third) are those described by music theory as 
being the most important in a given key. From a psychological 
point of view, the hierarchically important tones of a key act as 
stable cognitive reference points (Krumhansl, 1979, 1990) to 
which the other tones are anchored (Bharucha, 1984). 

A within-key hierarchy is also found among the seven chords of 
a key (Bharucha & Krumhansl, 1983; Krumhansl, Bharucha, & 
Castellano, 1982). Chords built on the first, fifth, and fourth scale 
degrees (referred to as, respectively, the tonic, dominant, and 
subdominant chords) usually have a more central syntactic func- 
tion than those built on the other scale degrees. For example, a 
dominant chord followed by a tonic chord is an authentic cadence, 
which marks finality. In contrast, a subdominant chord followed 
by a dominant chord is a half cadence, which marks a temporary 

i A complete description of the Western musical system is beyond the 
scope of this article. The main purpose of the following section is to 
highlight the organizational features that give rise to the most salient 
regularities in Western musical pieces. 

2 Major chords consist of intervals of a major third (four semitones) and 
a perfect fifth (seven semitones with respect to a reference pitch [the root]). 
In minor chords, the third is minor (three semitones), and in diminished 
chords the third is minor and the fifth is diminished (six semitones). 

3 The tonic is the tone on the first degree of the scale. It also gives 
its name to the key. For example, the tonic of the key of C major is the 
tone C. 
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Figure 1. Cycle of fifths representing the distances between major keys. 

ending. Both music theorists (Deli~ge, 1984; Schenker, 1979) and 
music psychologists (Sloboda, 1985) consider that the authentic 
cadence acts as a basic syntactic structure in Western music (see 
Deli~ge, 1984, and Sloboda, 1985, for a further development). 

A critical feature of Western music is that the functions of 
musical events change with the key context. A C-major chord 
functions as a stable tonic chord in a C-major context and as a less 
stable dominant or subdominant chord in the F- or G-major key 
contexts, respectively. Similarly, a G-C chord sequence forms an 
authentic cadence in a C-major key context but not in a G-major 
key context. This context dependency is a fundamental aspect of 
the Western tonal system: Understanding the function of events 
with respect to the musical context is crucial to assessing musical 
grammaticality. 

Despite the complexity of the system, sensitivity to musical 
structure does not require explicit learning. Because musically 
naive listeners are constantly exposed in everyday life to the 
regularities underlying the music of their culture, they acquire 
implicit knowledge of them (Bharucha, 1984; Dowling & Har- 
wood, 1986; Franc~s, 1958). This implicit knowledge embodies 
the functions of tones and chords in a key (Tillmann, Bigand, & 
Madurell, 1998), the relations between different keys (Bartlett & 
Dowling, 1980; Cuddy & Thompson, 1992a, 1992b; Thompson & 
Cuddy, 1989), and the change in function of events depending on 
the key context (Bharucha & Krumhansl, 1983; Bigand, 1993; 
Bigand, 1997; Bigand & Pineau, 1997; Krumhansl et al., 1982). 
The internalized representation influences musical memory (Big- 
and & Pineau, 1996; Cuddy, Cohen, & Mewhort, 1981; Dowling, 
1978; Dowling, 1991), musical expectancies (Bharucha & 
Stoeckig, 1986, 1987; Cuddy & Lunney, 1995), and the restoration 
of missing musical events (DeWitt & Samuel, 1990). Results 
generally reveal strong consistency for listeners with different 
levels of musical expertise. Although musicians usually exhibit 
better performance than nonmusicians, their overall responses 
show the same patterns (see also Bigand, Parncutt, & Lerdahl, 
1996; A. Cohen, 1994; Croonen & Houtsma, 1994). Questionnaire 
data even suggest that tonal knowledge is tacit for both groups of 
participants (Holleran, Jones, & Butler, 1995). Finally, event- 
related potentials (ERP) studies provide further evidence that 
musicians and nonmusicians show similar electrophysiological 

responses to subtle changes in the harmonic function of a target 
chord (Regnault, Bigand, & Besson, in press). 

Our main purpose in this article is to investigate how this 
implicit knowledge of Western pitch regularities may be repre- 
sented and learned through passive exposure to musical exemplars. 
We argue that a model of distributed knowledge offers a possible 
explanatory framework that accounts for learning in the absence of 
explicit tutoring and that suggests an underlying mechanism-- 
activation--that unifies a range of psychological tasks. It should be 
noted that, beyond the complex regularities of pitch structure, the 
Western tonal system also contains complex temporal regularities 
defined by metrical and rhythmic structures. In music cognition, 
the processing of pitch and temporal structures have often been 
considered independently. Even though this methodological inde- 
pendence remains a matter of debate (Boltz, 1999; Jones & Boltz, 
1989; Peretz & Kolinsky, 1993), we focus on pitch regularities 
only and not on temporal regularities. However, we return to this 
issue in the General Discussion by considering possible extensions 
of the connectionist model to integrate some temporal regularities 
of Western music. 

MODELS OF DISTRIBUTED K N O W L E D G E  
REPRESENTATION 

Connectionist models have two principal advantages over tra- 
ditional rule-based models: (a) The rules governing the domain are 
not explicit but rather emerge from the simultaneous satisfaction of 
multiple constraints represented by individual connections, and (b) 
these constraints themselves can be learned through passive expo- 
sure. In the field of artificial grammar learning, a knowledge 
representation of training stimuli may emerge from associative 
learning mechanisms of connectionist models. Autoassociator net- 
works memorize stimuli generated by artificial grammars, classify 
new stimuli, and simulate experimental results even better than 
exemplar-based models (Dienes, 1992). This approach allows us to 
interpret the notion of "abstract knowledge" differently than only 
in the strong sense of rule-like knowledge or of simple sensitivity 
to stored examples (Cleeremans, 1994). In the language domain, 
McClelland et al. developed one class of neural net models of 
knowledge representation. These interactive-activation models of 
word recognition (McClelland & Rumelhart, 1981; Rumelhart & 
McClelland, 1982) and speech recognition (Elman & McClelland, 
1984; McClelland & Elman, 1986) simulate the interaction be- 
tween knowledge and perception without storing linguistic rules 
explicitly. Three levels of units represent features, letters (or 
phonemes), and words. Rule-like behavior emerges from the in- 
teractions of a set of word units and letter (or phoneme) units. 

In the music domain, a growing number of neural network 
models have been developed during the last decade. Models of this 
nature have been offered for pitch perception (Sano & Jenkins, 
1991; Taylor & Greenhough, 1994), octave equivalence (Bharucha 
& Mencl, 1996), chord classification (Laden & Keefe, 1991), and 
melodic sequence learning (Bharucha & Todd, 1989; Krumhansl, 
Louhivuori, Toiviainen, J~'vinen, & Eerola, 1999; Page, 1994). 
Some models simulate more complex aspects of music learning 
and perception, such as categorization and memory of feature 
patterns. Gjerdingen (1990) exposed a four-level network based on 
Grossberg's (1987) adaptive resonance theory to early works of 
Mozart. The input layer codes music theoretic concepts (i.e., 
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harmonic tritone, contrapuntal dissonance) and low-level music 
features (i.e., melodic contour, pitch of the major diatonic scale 
plus a unit for the alterations of flat and sharp). The four levels 
include dynamic short-term memory (Level 1) that leads to the 
formation of stable categories (Level 2), and a second temporary 
store (Level 3) that categorizes on a higher level (Level 4). The 
model develops memories of critical feature patterns and derives 
categorizations comparable to complex music theoretic concepts 
(i.e., voice-leading combinations). 

Few models attempt to formalize how the multiple relationships 
among tones, chords, and keys may be represented in a single 
framework. Griffith's (1994) model simulates how keys are in- 
duced from patterns of pitch use and how abstract pitch identities 
are established from interval use. Supervised and unsupervised 
paradigms are used in a modular combination, allowing the model 
to use its own derived information to guide subsequent processes. 
The model formalizes an inductive mechanism for learning key 
and scale degrees from melodic sequences. It mostly concentrates 
on the links between pitch and key and is not designed to address 
the relationships between tones and chords and chords and keys. 
The output of the model is compared with music theory but not 
with empirical data. 

Leman (1995; Leman & Carreras, 1997) simulated the percep- 
tual learning of tonal centers by presenting chords and real musical 
pieces to a framework of two modules. In these simulations, the 
musical acoustical signal is first processed by an auditory model, 
and the transformed information defines the input for a self- 
organizing map. In Leman (1995), three auditory models define 
three types of input vectors for a variety of chords, and a self- 
organizing map is trained with these different inputs. Whatever the 
auditory model used, map units specialize in the detection of 
chords. After training, the activations on the map in response to a 
given stimulus reflect the harmonic relatedness of the represented 
chords to the stimulus. On the basis of activation regions found on 
the map, the tonal centers are inferred. The trained network is 
exposed to musical pieces, and the detected changes in tonal 
centers are compared with music theoretical analyses. In Leman 
and Carreras (1997), the input signal is derived from neural firing 
patterns in response to real sound recordings of Bach pieces. An 
SOM is trained to extract the regularities in these input patterns. 
After training, tonal centers activated by a given musical stimulus 
are inferred on the basis of activation regions on the map. The 
output of the model conforms generally to music theory, and some 
empirical data are simulated by the model. 

Leman's (1995) and Leman and Carreras's (1997) models focus 
on chords and on tonal centers but do not account for the relation- 
ships between tones, chords, and keys. The main interest is to show 
that higher order units of Western music (i.e., chords or tonal 
centers) may be learned by passive exposure to a rich acoustic 
input. The SOMs extract the invariant features of musical sounds 
that lead to the formation of abstract units. In other words, these 
models formalize how learning processes may be driven by psy- 
choacoustic features in a bottom-up manner. However, they do not 
investigate how the acquired knowledge may, in turn, influence the 
processing of musical events, leading to predictions that can be 
tested experimentally. The crucial benefit of learning is the use of 
knowledge to react to environmental stimuli better. Top-down 
influences facilitate the processing of environmental events, as has 
been shown in different domains of cognition, including music. 

For example, once the key of a musical context is recognized, the 
tones belonging to that key are perceived as more stable than other 
tones, even if they were not present in the stimulus context 
(Franc~s, 1958; Krumhansl, 1990). A model of knowledge repre- 
sentation should be able to account for these top-down effects and 
for the way they combine with bottom-up influences. In word 
recognition, connectionist models simulate the influence of knowl- 
edge by interactive activation between higher level units (words) 
and lower level units (letters; McClelland & Rumelhart, 1981). In 
music, Bharucha's (1987a, 1987b) model of spreading activation 
(referred to as MUSACT) relies on a comparable architecture. 

In this model, a pattern of connections constitutes a knowledge 
representation of Western harmony (Bharucha, 1987b, 1994). The 
units of the network are organized in three layers corresponding to 
tones, chords, and keys (Figure 2, top). Each of the 12 tone units 
is connected to three major and three minor chords, of which that 
tone is a component. Analogously, each chord unit is connected to 
three major key units representing keys of which it is a member. 
Western musical rules are not stored explicitly but emerge from 
the activation that reverberates by connected links between tone, 
chord, and key units. 

When a chord consisting of three tones (e.g., C-E-G) is played, 
the units representing these tones are activated, and phasic activa- 
tion is sent toward the chord units (see Figure 2, top). The chord 
unit connected to all three tones receives the strongest activation 
(the C-major chord in this example). During a second cycle (Fig- 
ure 2, middle), phasic activation from the active chord units 
spreads toward the key units (bottom-up activation) and starts to 
reverberate toward tone units (top-down activation). During the 
next cycle (see Figure 2, bottom), activated key units send top- 
down activation to chord units that simultaneously receive activa- 
tion from the tone units. Phasic activation continues to spread 
through the network between all layers until an equilibrium is 
reached. Early activation cycles reflect bottom-up influences: Ac- 
tivated chord units contain at least one of the component tones of 
the stimulus chord. For example, after a C-major chord, the chord 
unit E will be more activated than the chord unit D because it 
shares one tone with the stimulus chord (i.e., the tone E). It is 
noteworthy that the E-major chord unit is more activated than the 
D-major chord unit, even though the C-major chord and the 
E-major chord are harmonically less related in theory (they have 
no parent key) than are the C-major chord and the D-major chord 
(which both belong to the G-major key). Similarly, key units are 
activated if they have an activated chord as a member (Figure 3, 
left). During reverberatory cycles from initial activation to equi- 
librium, activation patterns change qualitatively. At equilibrium, 
the state of the network incorporates the influences of top-down 
processes and mirrors theoretical Western hierarchies. Activation 
tends to decrease with increasing harmonic distance between 
chords around the cycle of fifths. These top-down influences are 
clearly illustrated by the D- and E-major chord units. At equilib- 
rium, the chord unit D receives stronger activation than the chord 
unit E. Similarly, the activation of key units decreases monotoni- 
cally with increasing harmonic distance between major keys 
around the cycle of fifths (see Figure 3, right). 

For chord sequences, activation resulting from each chord is 
accumulated. After the offset of an event, the activation begins to 
decay exponentially over time. If another event occurs before 
activation has decayed appreciably, the phasic activation resulting 
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Figure 2. Bottom-up and top-down activation spreading in the MUSACT model after the presentation of a 
C-major chord. Top: Activated tone units send bottom-up activation to connected chord units (first cycle). 
Middle: Phasic activation spreads to key units and reverberates to tone units (second cycle). Bottom: Chord units 
receive activation from both key units and tone units (third cycle). From "MUSACT: A Connectionist Model of 
Musical Harmony," by J. J. Bharucha, 1987a, in Program of the Ninth Annual Conference of the Cognitive 
Science Society, pp. 508-517, Figure 7, Hillsdale, NJ: Erlbaum. Copyright 1987 by the Cognitive Science 
Society, Incorporated. Used by permission. 

from that next event is added to the residual activation from the 
previous event, thereby creating a pattern of activation that can be 
influenced by an entire sequence of events, weighted according to 
recency. In other words, the activation of a unit i in the network is 
a function of not just the most recent event e but also of the 

previous event, e - 1, the activation of e - 1 being itself a 
function of event e - 2 and so on. The total activation, aj. e, of a 
unit i (a tone, a chord, or a key) after an event e is an additive 
function of three quantities: (a) the bottom-up activation caused 
directly by the stimulus itself (i.e., the tones), (b) the indirect 
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Figure 3. Left: The state of the network just after hearing the tones C, E, and G (a C-major chord) but before 
activation has had a chance to reverberate back from key units to chord units. Right: The state of the network 
after activation has reverberated to a state of equilibrium. From "Music Cognition and Perceptual Facilitation: 
A Connectionist Framework," by J. J. Bharucha, 1987b, Music Perception, 5, p. 1, Figures 8 and 9. Copyright 
1987 by The Regents of the University of California. Adapted with permission. 

activation received from other units in response to event e (i.e., the 
phasic activation spreading in the system), and (c) the decayed 
activation caused by previous events e - 1 (being itself a function 
of event e - 2 and so on). The total activation, ai, e, of a unit i is 
given by the following equation: 

q 

ai, e = A + E Aai.e,c + ai.e-1(1 - d)  t (1) 
c =  1 

where A represents the stimulus activation; Y, Aa i .... is the sum of 
phasic activation of unit i in response to event e, accumulated over 
the q reverbatory cycles that are necessary to reach equilibrium; d 
represents the rate (varying between 0 and 1) at which activation 
decays after the offset of the last event; and t is the time elapsed 
since the last offset. 

MUSACT is an idealized simplification of aspects of the West- 
ern musical grammar because it does not incorporate units for 
minor keys and several other types of chords that may occur in 
Western music (i.e., diminished chords). A further simplification is 
the absolute pitch class coding at the input layer and the represen- 
tation of chord units independent of the relative position of the 
component tones. 4 In spite of these simplifications, the model 
provides a relevant framework for understanding how musical 
knowledge may be mentally represented and how this knowledge, 
once activated by a given musical context, may influence the 
processing of tonal structures (Bharucha, 1987b). 

Support for the MUSACT model has come from empirical 
studies using a harmonic priming paradigm. The rationale of these 
studies is that a previous chord primes harmonically related chords 
so that their processing is speeded up. The extent to which a chord 
is primed by a context is a function of the activation of the unit 
representing this chord in the model. The more a chord unit is 
activated, the more the chord is primed. To test this hypothesis, 
Bharucha and Stoeckig (1986, 1987) asked participants to decide 
as quickly as possible whether or not a target chord following a 
prime chord was in tune (see also Tekman & Bharucha, 1992). 
Participants heard a prime chord followed by a harmonically 
closely or distantly related target chord. For example, if the prime 
chord is C major, B b major would be a related target and Fff major 

an unrelated target. In MUSACT, the B b-major chord would be 
more strongly primed by a C-major chord than would be the 
Fit-major chord (see Figure 3). Empirical data confLrrned this 
prediction: The priming effect was shown by (a) a bias to judge 
targets to be in tune when related to the prime and out of tune when 
unrelated, and (b) shorter response times for in-tune targets when 
related and for out-of-tune targets when unrelated. A previous 
musical context (a single chord in these experiments) thus gener- 
ates expectancies for related chords to follow, resulting in greater 
consonance and faster processing for expected chords. 

The priming of a chord depends not only on the previous chord 
but also on its harmonic function within an extended temporal 
context (Bigand & Pineau, 1997; Bigand, Madurell, Tillmann, & 
Pineau, 1999; Tillmann, Bigand, & Pineau, 1998). Bigand and 
Pineau (1997) presented participants with eight-chord sequences. 
The expectations for the last chord (the target) were varied by 
changing the harmonic context created by the first six chords. The 
target and its flanking chord were always held constant. In one 
context, the last chord acted as an harmonically stable tonic chord, 
part of an authentic cadence (V-I). In the other context, the last 
chord took the form of a less stable fourth harmonic degree 
following an authentic cadence (I-IV). Participants were faster in 
their intonation judgment of the target chord when it acted as a 
tonic chord. Simulations were performed with MUSACT using the 
first seven chords of the sequences, and the activation of the target 
chord unit was read off (Bigand et al., 1999). The target chord unit 
received stronger activation in the former context (i.e., when the 

4 The model does not deny the structural importance of harmonic voice 
leading (i.e., the melodic motion between the tones of successive chords) 
and chordal position (open vs. close) in Western music theory. It postulates 
that the introduction of these factors is not critical to account for how 
musical knowledge may be mentally represented and how this knowledge, 
once activated by a given musical context, may influence the processing of 
tonal structures. Empirical studies that have manipulated voice leading, 
chordal position, or the harmonic spectnun of the sound (e.g., piano-like 
sound vs. pure tones) suggest a weak influence of these factors on chord 
processing that is overridden by harmonic relationships (Bigand, Tillmann, 
Manderlier, & Poulain, 2000; Rosner & Narmour, 1992; Stoeckig, 1990). 
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target acted as a stable tonic chord) than in the latter context. The 
activation pattern thus mimics human performance and manages to 
account for global context priming effects. Other research indi- 
cates that MUSACT also accounts for priming effects at several 
levels of global musical context (Bigand et al., 1999) or that occur 
when both global and local context are factorially manipulated 
(Tillmann, Bigand, & Pinean, 1998). 

MUSACT highlights a crucial issue of Western music: whether 
the relations between chords are driven by similarities based on 
acoustic properties of tones or by implicit knowledge of cultural 
conventions and usage (see Bigand et al., 1996, and Pamcutt, 
1989; for a discussion). MUSACT disentangles these two factors 
by charting the time course of bottom-up and top-down influences. 
It predicts that the activation pattern reflects bottom-up influences 
at early activation cycles, whereas top-down influences are pre- 
dominant when the model has enough time to reach equilibrium. 
Tekman and Bharucha (1998) tested this prediction by pitting 
shared tones against conventional relatedness. Two types of target 
were selected: One was psychoacoustically more similar to the 
prime, the other more closely related on the basis of harmonic 
convention. For example, a C-major prime shares a tone with an 
E-major target but does not share a tone with a D-major target; yet 
D major is more closely related to the prime in conventional usage. 
Priming results revealed facilitation for psychoacoustically similar 
targets when they followed after a short (50 ms) stimulus onset 
asynchrony (SOA) and facilitation for conventionally related tar- 
gets after a longer SOA (500 ms or longer). Although both psy- 
choacoustic similarity and conventional relatedness drive priming, 
the influence of the former is short lived, precisely as predicted by 
the temporal course of activation in the MUSACT model. 

As originally conceived, the model was based on music theo- 
retic constraints; neither the connections nor their weights resulted 
from a learning process. In this respect, the model represented the 
idealized end state of an implicit learning process. To be compel- 
ling, a cognitive model of Western harmony should simulate the 
internalization of Western pitch regularities by mere exposure, 
allowing the connection weights to adapt to the musical environ- 
ment. It has been suggested that MUSACT ideally can internalize 
these regularities by passive self-organization (Bharucha, 1991, 
1992). In the next section, we describe how this can happen. 
Specifically, we show how a hierarchical SOM manages to learn 
the Western pitch regularities, comparable to those in MUSACT. 
The learned model will then be tested for its capacity to simulate 
a variety of empirical data concerning the perceived relationships 
between and among tones, chords, and keys (cf. SIMULATIONS 
OF EMPIRICAL DATA section). 

A M O D E L  THAT LEARNS WESTERN H A R M O N Y  
BY SELF-ORGANIZATION 

General  Principles of  SOMs 

In connectionist models, unsupervised learning algorithms ex- 
tract statistical regularities and encode events that occur often 
together (Grossberg, 1970, 1976; Kohonen, 1995; Rumelhart & 
Zipser, 1985; Von der Malsberg, 1973). These algorithms are well 
suited to music perception because the organization of chords or 
tonalities presumably occurs without supervision. One unsuper- 
vised learning algorithm is the SOM proposed by Kohnnen (1995). 

It creates topographic mappings between the input data and neural 
net units of a map. For two similar input patterns, the map units 
that respond maximally are located near each other. This conforms 
to principles of cortical information processing, such as the for- 
marion of spatial ordering in sensory processing areas (i.e., so- 
matosensory, vision, and audition). In the primary visual cortex, 
the orientation of stimuli to which cells respond best changes in an 
orderly fashion across the context: Nearby cells respond best to 
similar orientations (Hubel & Wiesel, 1962). The auditory cortex 
displays a tonotopic organization in which cells responding best to 
different frequencies are arranged in an orderly fashion (Brugge & 
Reale, 1985; Wessinger, Buonocore, Kussmaul, & Mangun, 1997). 
In the auditory system, tonotopic organization can be found at 
almost all major stages of processing (i.e., inner ear, auditory 
nerve, cochlear nucleus, auditory cortex). 

SOM is based on competitive learning, an algorithm for data- 
driven self-organized learning. With this algorithm, the neural net 
units gradually become sensitive to different input stimuli or 
categories (Rumelhart & Zipser, 1985). The specialization occurs 
by competition among the units. When an input arrives, the unit 
that is best able to represent it wins the competition. The winning 
unit is then allowed to learn the representation of this input even 
better, as is described later. The unit's response will be subse- 
quently stronger for this same input pattern and weaker for other 
patterns. In a similar way, other units learn to specialize to respond 
to other input patterns. 

The competitive learning algorithm can be generalized, if there 
exists a spatial layout of the units. On an SOM, for example, the 
units are located on a discrete lattice. The generalization implies 
that not only does the winning unit learn, but its neighbor units are 
also allowed to learn. Neighbor units will gradually specialize to 
represent similar inputs and the representation becomes ordered on 
the map. After learning, each unit is specialized to detect a par- 
ticular input pattern, and a topographic organization of the input 
data can be discovered on the map, such that similar input patterns 
activate nearby map units. 

In such a neural network, the input layer and the two- 
dimensional map layer are fully interconnected by synapses. Be- 
fore learning, the connection strengths (the weights, w) are initial- 
ized to random values. When a stimulus is presented, the input 
units, i, that are tuned to the features of the stimulus, are activated. 
These activations of the input units a(i) spread to the map units, j ,  
by the connected links, w(i, j). Each unit of the map layer, j ,  
accumulates the activation it receives from the input units. The 
activation of each map unit a(1) is given by: 

a(j) = Y~ a( i )*w(i ,  j ) .  (2) 
i 

The unit j with the highest activation defines the winning unit. 
During the learning phase, the associated weight vectors of the 
winning unit w and those within a neighborhood set N are updated. 
The weights of units outside the neighborhood set are kept con- 
stant. Learning consists of updating the weights feeding into the 
winning unit and its neighbors with the following algorithm (Ko- 
honen, 1995): 

w<,) + "))(t)*a(t)(i) 
w(,+ 1) = (3) 

w(0 + ))(,).a(,)(i)ll ' 
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where w~t+l ~ represents the weight vector at time t + 1, w~o at time 
t, and a~o ~ represents the learning rate. This learning rule reinforces 
links coming from active input units and weakens links coming 
from inactive input units. In other words, it moves the weight 
vectors closer to the input vector, making the winning unit and its 
neighbors more likely to win the competition when this input or 
one similar to it is presented again. 

The neighborhood N is set to be wide at the beginning of 
learning. During learning, it decreases monotonically until it 
consists of the winning unit alone. As learning begins, a large 
neighborhood allows a global organization to emerge. With a 
smaller neighborhood radius, the units become adapted to the 
individual patterns and its close relatives, and a local organi- 
zation emerges. 

Before learning, there is no particular organization among the 
map units. When the net is trained by repeated presentation of 
the input data, it begins to self-organize. A topographic pattern 
begins to appear, such that units that are topographically close 
in the array will be activated by similar input stimuli. SOM can 
be conceived of with one map layer or be adapted to multilayer 
hierarchical self-organizing maps (HSOMs; Lampinen & Oja, 
1992). 

Simulating Implici t  Learning of  Western 
Music With SOMs 

For the simulations of implicit learning of Western harmony, 
we defined a hierarchical SOM. Its structure is similar to 
models of language perception (McClelland & Rumelhart, 
1981; Elman & McClelland, 1984) and of music perception 
(Bharucha, 1987b). The input layer is tuned to octave equiva- 
lent pitch classes. The second and third layers will learn to 
specialize in the detection of chords and keys, respectively. The 
hierarchical map is inspired by feature detectors found in the 
brain, with elementary feature detectors at the sensory periph- 
ery (e.g., frequency), and more abstract feature detectors in the 
primary auditory cortex, for example, pitch (Pantev, Hoke, 
Liitkenh6ner, & Lehnertz, 1989) or contour (Weinberger & 
McKenna, 1988). The abstract pitch-class coding was based on 
the demonstrated ability of neural net models to extract pitch 
from frequency (M. A. Cohen, Grossberg & Wyse, 1995; Sano 
& Jenkins, 1991) and to learn octave equivalent pitch classes 
(Bharucha & Mencl, 1996). M. A. Cohen et al. 's (1995) model 
transforms a spectral representation of an acoustic source into a 
spatial distribution of pitch strengths. In Bharucha and Mencl's 
(1996) model, octave categories with abstract pitch classes are 
learned by self-organization operating on a spectral represen- 
tation. Our present model can be conceived of as subsequent to 
these phases of auditory preprocessing (cf. Bharucha, 1991, for 
an expansion of Bharucha, 1987b). 

The self-organizing algorithm permits the formation of units 
representing events that are frequently associated. In music, this 
association consists of either the simultaneous occurrence of 
tones (which define a chord) or the temporal proximity of 
events (such as arpeggiated tones of a chord or the chords 
forming a key). In the proposed model, self-organization leads 
to a hierarchical encoding in which tones occurring together are 
represented by chord units and, similarly, chords occurring 
together are represented by key units. To model the influence of 

knowledge on perception, the neural net structure resulting 
from learning simulations is then used with a spreading activa- 
tion mechanism. After the presentation of a stimulus, activation 
reverberates between the three layers until an equilibrium is 
reached. The use of a neural net structure as a reverberation 
system implies two constraints. 

The first constraint deals with the simulation of top-down in- 
fluences and has its origin in previously proposed spreading acti- 
vation models (i.e., Bharucha, 1987b; McClelland & Rumelhart, 
1981). Three-layer models of word recognition (i.e., features, 
letters, words) and of musical knowledge representation (i.e., 
tones, chords, keys) manage to simulate top-down influences by 
favoring the spread of activation between the higher levels of 
representation, namely the second and the third layers. In the 
word-recognition model, the interactive processing concerns only 
the letter and word levels, without feedback to the feature level. In 
MUSACT, the weights of the connections between chord and key 
layers are stronger than between tone and chord layers, yielding an 
initial influence of the tone input, followed by a strong influence 
of the two abstract layers and only a weak additional influence of 
the tone layer. A similar constraint is implemented in the simula- 
tions presented later. 

The second constraint results from units on the SOM that are not 
specialized in the detection of a stimulus after learning. Because 
reverberation should occur only between specialized units, the 
connections feeding into unspecialized units (e.g., units that do not 
win for any of the training patterns) are treated by a pruning 
mechanism. Pruning is a procedure supported by the developmen- 
tai neural principle that connections weaken from disuse, and it is 
generally used in supervised learning by weight decay or weight 
elimination (Haykin, 1994; LeCnn, Denker, & Solla, 1990; Se- 
tiono, 1997). 

Four learning simulations respecting both constraints are pre- 
sented. All simulations were based on the same network architec- 
ture that learned with the self-organizing algorithm. The network 
was trained with either simple harmonic material (cf. Learning 
Simulations With Simple Harmonic Material section) or more 
realistic chord sequences (of. Learning Simulations With Short 
Chord Sequences section). The input was defined by either a 
sparse coding or a psychoacoustically richer coding scheme 
(sparse input coding in simulations SIC-1 and SIC-2 vs. rich input 
coding in simulations RIC-1 and RIC-2). We start by considering 
learning based on simple harmonic material and a sparse input 
coding. 

Learning Simulations With Simple Harmonic Material 

SIC-1 

Network architecture. A three-layer hierarchical system was 
defined as follows: The input layer consisted of 12 units, the 
second layer was a map of 36 units, and the third layer was a map 
of 16 units. The input units were tuned to the 12 chromatic scale 
tones, representing octave equivalent pitch-class detectors. The 
units of the f'trst and second layers were fully interconnected with 
a connection matrix. The units of the second and third layers were 
fully interconnected with a second connection matrix. All connec- 
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tions were bidirectional, and their strengths were initialized to 
random values between 0 and 1 before learning. 5 

Input coding. During training, chords (consisting of three 
tones) were presented to the input layer (see later discussion). In 
the sparse input coding, the presence of tones was coded directly: 
A tone unit was activated if the tone to which it was tuned occurred 
in the stimulus, and was set to 0 otherwise. By convention, the 12 
tone units were ordered as follows: A-A $-B-C-C ~-D-D ~-E-F-F I~- 
G-G~. The three component tones of a C-major chord were 
represented by the following vector: {0-0-0-1-0-0-0-1-0-0-1-0}. 

Training. The network was allowed to self-organize as indi- 
cated previously (see Equations 2 and 3). At the outset of training, 
the neighborhood radius was set to 5 and 3.6 for chord and key 
layers, respectively (for both maps the neighborhood was defined 
by euclidean distances between units). During training, the neigh- 
borhood radius decreased until reaching 0, at which point only the 
winning unit learned. The learning rate ~1 was decreased over the 
course of learning. Whenever the neighborhood radius decreased, 
the learning rate was divided by two. In the convergence phase 
(i.e., when only the winning unit learned), the learning rate de- 
creased over the number of training cycles (one training cycle 
consisted of the presentation of the whole set of stimuli), c, as 
follows: 

n ' =  l l (c  + l /n ) .  (4) 

Training consisted of two phases. In the first training phase, the 
second layer was trained with sets of three tones (e.g., C-E-G) 
corresponding to the 12 major and 12 minor chords of Western 
music. Each triplet of tones was presented separately to the input 
layer. In this phase, units of the second layer learned to detect 
chords. In the second training phase, the third layer was trained 
with 12 sets of 6 chords presented to the tone layer. One set of 
chords consisted of 3 minor and 3 major chords of a given key 
(e.g., the 3 major chords C, F, and G and the 3 minor chords d, e, 
and a, all of which belong to the C-major key). The six chords 
were presented individually to the tone layer. For each input chord, 
the activation of the winning chord unit in the second layer 
(referred to by the index b) was stored in memory without decay 
until the end of the presentation of the chord set. The pattern of 
indices, b, defined the input for the training of the third layer. In 
this second phase, the units of the third layer learned to detect 
keys. In both phases the training patterns were presented in random 
order during each training cycle. 6 

Calibration of  the maps. During training, units became spe- 
cialized in the detection of chords in the second layer and in the 
detection of sets of chords (keys) in the third layer. For both 
training phases, the weight changes decreased over the training 
cycles and with decreasing neighborhood. When weights con- 
verged to stationary values, the maps were calibrated by naming 
each winning unit after the stimulus for which it won. For exam- 
ple, the unit that won for the three tones C-E-G was called the 
C-major chord unit. After training, the average quantization error 
(i.e., the mean of the euclidean distances between each input vector 
and the weight vector of its corresponding winning unit) was less 
than .01 for each map. 

Topographic organization and connection matrices. The cal- 
ibration phase revealed a topographic organization of both maps. 
After training, chords that share component tones were represented 
by neighboring units in the second layer (Figure 4, left). Chords 
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Figure 4. The calibration maps of the second layer (left) and the third 
layer (right) of the network SIC-1. For the second layer, winning units are 
labeled by chord names (minor chords in lowercase letters, major chords in 
uppercase letters). For the third layer, names of winning units indicate 
major keys. 

that do not share tones were not represented by neighboring units. 
In the third layer (see Figure 4, right), key units were organized in 
a way that reproduces the topology of the cycle of fifths (also see 
Figure 1). Keys sharing chords and tones were represented close to 
each other on the map. The quality of the learned representation 
was tested for both maps. In a coherent learning solution, the 
distance between specialized units on the map should reflect the 
relationships between the input stimuli. To address this issue, the 
euclidean distances between all specialized units E and the corre- 
lations between all input vectors C were calculated separately for 
each map. The correlation between the two indices C and E was 
r(298) = .69 for the chord layer and r(76) = .95 for the key layer. 
The learned representations on the two-dimensional maps reflected 
the regularities within the input spaces. 

After training, each tone unit was strongly linked to six winning 
units in the chord layer, and each chord unit was strongly linked to 
three winning units in the key layer. The connections feeding into 
unspecialized units were eliminated during the pruning phase. In 
the pruning procedure, all stimuli (chords and sets of chords) were 
presented in random order to the input layer. After the presentation 
of each stimulus, the weights feeding into losing units were de- 
creased, and the weights feeding into the winning unit were rein- 
forced by a parameter varying as a function of the number of 
winning units in the layer. After pruning, only connections feeding 
into winning units remained. 

Feed-forward and reverberation system. After learning, the 
model was used both as a feed-forward system and as a reverber- 

5 For chord and key layers, the number of units on the maps were set 
somewhat relative to the number of stimuli in the training set. In supple- 
mentary simulations with SIC-l, the second and third layers were each 
defined by a map of 36 units. The outcome suggested that the basic spatial 
structure learned by the key map holds for maps of both sizes (i.e., 16 
and 36 units). In the input layer, the invariant pitch-class coding leads us 
to conceive melodies as sets of scale degrees in reference to the tonic and 
to consider chords as being invuriant under inversions. 

6 The number of necessary training cycles varied from 200 to 1,000 over 
the four learning simulations. At the outset of training, the learning rate 
was set to .5 and .1 for chord and key layers, respectively, in the reported 
simulations. Other simulations with SIC-1 and SIC-2 showed that a learn- 
ing rate of .2 for both layers led to similar results. 
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ation system. Reverberation was defined by phasic activation 
spreading between the units by the weights until equilibrium was 
reached. Equilibrium was defined to be reached when phasic 
activation was less than a threshold of .005 for each unit (cf. 
Bharucha, 1987b). Because of the normalization process (see 
Equation 3), the learned weights of the two matrices generated 
reverberating phasic activation that exceeded the bounds within 
which equilibration occurs. 7 The phasic activation reverberating 
within each of the matrices was thus scaled by a parameter de- 
signed to favor reverberation in the chord-key matrix (see the first 
constraint discussed earlier). This parameter was set first for the 
chord-key matrix by placing it within the boundary conditions for 
equilibration for this matrix alone. The corresponding parameter 
for the tone-chord matrix was then titrated so that the system as a 
whole reached equilibrium within approximately 100 reverbera- 
tion cycles. 

When used as a feed-forward system, the stimulated tone units 
send activation toward chord units, which in turn send activation 
toward key units. This feed-forward activation reflects bottom-up 
information (tones present in the stimuli) and does not incorporate 
top-down influences. Figure 5 (left) represents activation levels for 
the 12 major chord units and the key units. When the three tones 
of a C-major chord are presented, the unit in the second layer that 
becomes most active is the one specialized in the detection of the 
C-major chord, followed by the units specialized for major chords 
sharing one of the three tones. Units of chords that do not share 
component tones were not activated. A similar pattern was found 
for the key layer: The most activated unit was the C-major key, 
followed by the F-major key, the G-major key, and the other keys 
linked to one of the activated chord units. The key of F~ was not 
activated, because it does not share any tones with the C-major 
chord. 

When used as a reverberation system, the pattern of activation 
changes qualitatively because of the top-down influence of 
learned, schematic structures (see Figure 5, right). In the chord 
layer, the difference between bottom-up and top-down activation 
was manifest in the comparison of activations for the E- and 
D-major chords. When the three tones of a C-major chord were 
presented, feed-forward activation caused the E-major chord unit 
to be more strongly activated than the D-major chord unit. During 
reverberation, however, the D-major chord unit overtook the 
E-major chord unit by virtue of its closer harmonic relationship to 
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Figure 5. Activations of major chord units and key units in the network 
SIC-1 after the presentation of a C-major chord for bottom-up activation 
only (left) and for when the network has reached equilibrium (right). 

C major as mediated by the key units. Across all major chord units, 
activation decreased monotonically with distance around the cycle 
of fifths from C, with the lowest for F~ and B. In the third layer, 
the most activated key unit was C major (for which the presented 
chord is the tonic), and activation decreased monotonically with 
distance along the cycle of fifths and, equivalently, with distance 
along the topographic key map. 

RIC-1 

The sparse input coding considered only the presence of the 
component tones of the chords. However, each tone contains a 
complex harmonic spectntm, which may influence the perception 
of harmony (Helmholtz, 1885/1954; Parncutt, 1989; Terhardt, 
1974). Consequently, a richer input coding scheme was used in the 
following learning simulation (RIC-1). This coding, based on the 
psychoacoustic theory of Pamcutt (1988), was used by Leman 
(1995) in his simple auditory model. In Parncutt's theory, subhar- 
monic virtual pitches are assigned to each component of a complex 
tone, and the frequency of the most commonly generated subhar- 
monic determines the perceived pitch. Harmonic relationships 
between two chords are estimated by two indices based on virtual 
pitch cues: pitch salience (intensity of a virtual pitch cue) and pitch 
commonality (number of cues shared by two pitch vectors). Fol- 
lowing Parncutt (1988) and Leman (1995), a chord was coded as 
a pitch-class vector whose values are weighted sums of the sub- 
harmonics corresponding to those pitch classes. For example, a 
C-major chord was represented by the following pattern: {.85-.2- 
0-1.83-.1-.45-.33-1.1-.7-.25-1-.33} (representing the tone units 
A-AIC-B-C-C~-D-D~-E-F-F~-G-G~). A learning simulation, as 
described for SIC-l, was run again with this richer input coding. 

Topographic organization and connection matrices. The rich 
input coding influenced only the topographic organization of the 
second layer and the matrix connecting the tone layer to the chord 
layer. Twenty-four units in the second layer were specialized in the 
detection of the chords. As in SIC-l, neighboring units had tones 
in common. However, the richer coding yielded a more global 
organization: The map was globally divided in two (upper and 
lower halves), each half corresponding to chords from one side of 
the cycle of fifths (Figure 6, left). This outcome was in accord with 
Petroni and Tricarico (1997), who analyzed the influence of input 
coding on the location of winning units. They found that, in 
contrast to a simple local representation (that indicates which pitch 
is activated in the triad), adding the subharmonic sum of the tones 
produced an organization close to the cycle of fifths. In our 
simulations, 11 of the 12 tone units were linked to a winning chord 
unit, even if some of the links remained small. This pattern of 
connections reflected the new input coding in which 1 of the 12 
subharmonics was not present in the coding of one chord: For 
example, in the C-major chord the tone unit B was not activated 

7 A reverberation system with two matrices reaches equilibrium if two 
conditions are satisfied. First, each matrix used separately as a reverbera- 
tion system reaches equilibrium on its own. This constraint is satisfied if 
the maximum eigenvalue of the matrix is less than l. Second, the mean of 
weights over both matrices is smail enough to permit an equilibrium for 
reverberation in the total system. This constraint is satisfied if the phasic 
activation sent back from a layer in a second cycle is smaller than the 
phasic activation sent in the first cycle. 
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Figure 6. The calibration map of the second layer of the network RIC-1 
(left). Winning units are labeled by chord names (minor chords in lower- 
case letters, major chords in uppercase letters). Activations of major chord 
units and key units after the presentation of a C-major chord for bottom-up 
activation only (right). 

(see prior discussion). The first connection matrix thus developed 
quite differently in this simulation from the way it did in SIC-1. 
Interestingly, these differences had no influence on the formation 
of the second matrix. The second matrix and the topographic 
organization of the third layer had the same characteristics as in 
SIC-1. 

Feed-forward and reverberation system. The feed-forward ac- 
tivation for major chord and key units revealed a slightly different 
pattern from SIC-1 (see Figure 6, right). In the chord layer, these 
differences were observed especially at the At -  and D-major units, 
whose activations were higher than in SIC-1 although still lower 
than the G~- or A-major units. The global shape of the curve was 
thus preserved with a stronger feed-forward activation for the 
E-major chord than for the D-major chord. The key layer differed 
in two aspects from the feed-forward simulation in SIC-1. First, 
activation decreased with distance around the cycle of fifths, 
because the At  key was more strongly activated than the D~ key. 
Second, the difference between the dominant key and the sub- 
dominant key disappeared. 

For both layers, subharmonic information changed bottom-up 
profiles so that they were closer to the shape of top-down profiles 
than with sparse coded inputs (see Figure 5, left). With reverber- 
ation, however, the activation profiles of chord and key layers 
were analogous for rich and sparse coding (see Figure 5, right). 
The comparison between SIC-1 and RIC-1 suggests that the as- 
ymptotic behavior of the reverberating model is not particularly 
sensitive to the richness of the input, even though the bottom-up 
effects are. The top-down processes driven by the more abstract 
learned knowledge of Western harmony impose a pattern of acti- 
vation that is similar regardless of whether the structure within the 
harmonic and subharmonic series is used by the system. 

Learning Simulations With Short Chord Sequences 

In simulations SIC-1 and RIC-1, the model was exposed to sets 
of six chords presented randomly. This material may be viewed as 
somewhat artificial for two reasons. First, it did not mirror the 
transition probabilities of chords in Western music. Second, each 
of the chords was presented with equal salience. The material used 
in the following simulations, SIC-2 and RIC-2, was more ecolog- 

ically valid for learning the connection matrix between chord and 
key units. Short chord sequences were presented to the network, 
and the activation of chord units decayed as the chords receded 
into the past, simulating a decaying memory. 

Sequences of seven chords were constructed by conforming to 
standard harmonic root progressions (Piston, 1978) and statistical 
chord distributions (Budge, 1943). The selection of chords was 
restricted to the following set of chords in a major key: I, ii, iii, IV, 
V, and vi. Tonic chords (I) occur more often than dominant chords 
(V), followed by subdominant chords (IV), then vi, and ii, and 
least often iii. Ten sequences were constructed by selecting chords 
at random using a probability distribution based on the prior 
constraints. The last chord in each sequence was the tonic chord of 
the key. Consistent with conventions of harmonic progression, 
each tonal sequence ended with a final V-I or IV-I cadence. These 
sequences were transposed to all 12 major keys, resulting in 120 
training sequences. 

The chords of a sequence were presented to the input layer one 
by one. For each input chord, the activation of the winning chord 
unit (referred to by the index b) was stored in memory until the end 
of the sequence and was decreased by a decay parameter. The 
decreasing activation pattern of these indexes b defined the input 
for the third layer. Simulations were run with the sparse input 
coding (SIC-2) and the rich input coding (RIC-2). 

SIC-2 

Topographic organization and connection matrices. The new 
training material influenced only the matrix linking chord to key 
units. In the calibration phase, the winning key units were deter- 
mined by presenting sets of six chords (together forming a key) to 
the network. Presenting the training sequences after learning cre- 
ated the highest activation in the key unit representing the tonic 
key of the sequence. The representation of the key units in the third 
layer mirrored the cycle of fifths. As in the simulations RIC- 1 and 
SIC-1 with artificial tonal material, keys sharing chords and tones 
were still represented close to each other on the map. Each winning 
key unit was linked to six chord units representing chords belong- 
ing to that key. The strengths of these connections mirrored the 
statistical chord distributions of the stimuli: Links from the tonic 
chord unit were the strongest (.663), followed by those from the 
dominant chord (.542), the subdominant (.34), then vi (.296), ii 
(.24), and iii (.08). The strengths of the connections depended on 
the functions of the chords in the corresponding key: The same 
chord (e.g., C major) had a stronger link to the key for which it is 
the tonic chord (the C-major key) than to a key for which it is the 
subdominant chord (the F-major key). 

Feed-forward and reverberation system. When used as a feed- 
forward system, the presentation of a C-major chord activated the 
C-major key most strongly, followed by F, G, and others sharing 
one of the activated chords. The pattem of activation across the 
key layer generally mirrored that of SIC-l, except that (a) the 
dominant and subdominant keys were equally activated and (b) the 
activation of C, F, and G major keys were more pronounced. This 
difference was due to higher rates of occurrence of the tonic, 
subdominant, and dominant chords in the sequences, resulting in 
stronger weights to these chords and correspondingly higher acti- 
vation (Figure 7). 
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F# C # G #  D # A #  F C G D A E B 

Figure 7. The activations of key units after the presentation of a C-major 
chord for bottom-up activation only in the network SIC-2. 

When used as a reverberation system, the activation patterns of 
chord and key layers at equilibrium were consistent with the 
results of SIC-1. The unit of the presented chord and the corre- 
sponding tonic key unit were the most activated, and activation 
decreased with increasing distance around the cycle of fifths. In 
SIC-2 the basic structure and connections were learned success- 
fully (albeit with varied connection strengths), and the harmonic 
relationships that emerged after reverberation were consistent with 
activation patterns obtained previously. 

RIC-2 

Finally, simulation RIC-2 was run with richer input coding (as 
described previously for RIC-1), using the chord sequences from 
SIC-2. The purpose of this simulation was to determine how the 
complexity of both input coding and statistical regularities of 
musical chord sequences could be combined during the learning 
process. 

Topographic organization and connection matrices. The sec- 
ond matrix reflected the characteristics of the new material but was 
not influenced by the rich input coding. The second matrix and the 
organization of the third map paralleled the results obtained with 
sparse coding in SIC-2. 

Feed-forward and reverberation system. The feed-forward ac- 
tivation pattern of chord and key layers was similar to the results 
of RIC-1 (see Figure 6, right). After reverberation, the activation 
levels of chord and key units decreased with increasing distance 
around the cycle of fifths. In the chord layer, the decrease of 
activation was smoother than in the previous simulations (Figure 
8). Unlike SIC-l, the differences in activations between D~ and 
A~ chord units (and D and A chord units) were no smaller than 

< 

chord units 

F# C # G #  D # A #  F C G D A E B 

Figure 8. Activation of major chord units after the presentation of a 
C-major chord after reverberation in the network RIC-2. 

those between the other chord units' neighbors on the cycle of 
fifths (see Figure 5, right). The chord activation pattern seems to 
reflect the combined influence of rich coding and complex learn- 
ing material. However, the curve reflects the same rank order of 
activation between chord units as in the other networks. In the key 
layer, the results mirrored those of the previous simulations, in- 
cluding those based on simple material. 

Comparison of the Four Trained Networks With MUSACT 

The four learning simulations demonstrate that a basic repre- 
sentation of Western harmony can be learned by mere exposure 
through self-organization. For both sparse and rich input coding, 
specialized representational units were formed for combinations of 
musical events (tones, chords) that occur with great regularity. 
Table 1 displays the correlation between the activation patterns of 
MUSACT and activation patterns of the four trained networks 
after the presentation of a single chord: SIC- 1, embodying the most 
constraints (simple learning material, sparse input coding), 
matches MUSACT almost perfectly, and the other three networks 
correlate strongly. The activation patterns of the MUSACT model, 
originally constructed on the basis of theoretical musical con- 
straints and originally proposed as an idealized end state of 
a learning process, can emerge automatically through self- 
organization. 

A comparison of the four simulations suggests that the model 
learns the structural differences of the input coding (sparse vs. 
rich) and of the learning materials (six chords per key vs. chord 
sequences). The connection matrix between the tone and chord 
layers reflected differences as a result of the input coding. The 
matrix that issued from rich input coding (RIC-1 and RIC-2) was 
more complex than that issued from sparse input coding (SIC-1 
and SIC-2). The connection matrix between the chord and key 
layers reflected the learning materials. After learning with sets of 
chords (SIC-1 and RIC-1), all links between chords and keys had 
the same strength, and no distinction was made between major and 
minor chords. After learning with chord sequences (SIC-2 and 
RIC-2), links between chords and keys varied in strength, reflect- 
ing the statistical distribution of chords within the corpus. How- 
ever, this higher level learning was not influenced by the input 
coding. 

The differences in the structure of the input coding were seen 
essentially in the feed-forward activation of chord units. After 

Table 1 
Correlation of Activation Patterns in the Four Learned 
Networks and in MUSACT for Major Chord and 
Key Units After a Single-Chord Presentation 

Feed-forward system Reverberation system 

Networks Chords Keys Chords Keys 

SIC-1 1 .999 .999 .999 
RIC-1 .915 .977 .984 .998 
SIC-2 1 .974 .989 .995 
RIC-2 .915 .973 .971 .995 

Note. p < .01 for all correlations. SIC = sparse input coding; RIC = rich 
input coding. 
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reverberation, the four trained networks yielded comparable acti- 
vation patterns. The psychoacoustically rich input coding is thus 
especially important for bottom-up processes but makes little 
difference after the abstract knowledge by top-down processes has 
exerted its influence. We examined this quantitatively using Parn- 
cutt's (1989) psychoacoustic measure of harmonic relatedness. In 
Pamcutt's model, the strength of a harmonic relationship is pre- 
dicted from the degree to which two chords have virtual pitches in 
common. To analyze the importance of input coding, the chord 
activations of all networks as feed-forward and reverberation sys- 
tems were correlated with Parncutt's pitch commonality values. 
Correlations between feed-forward activation of chord units and 
pitch commonality values were higher for networks based on rich 
input coding r(10) = .90 for RIC-1 and RIC-2, than for networks 
based on simple input coding, r(10) = .73 for SIC-1 and SIC-2. 
However, after reverberation, these correlations changed for all 
networks: They decreased for rich coding networks, r(10) = .85 
and r(10) = .88 for RIC-1 and RIC-2, respectively, and increased 
for simple coding networks, r(10) = .87 and r(10) = .84 for SIC-1 
and SIC-2, respectively. This confirms that the importance of 
psychoacoustic information in coding seems to be overwritten by 
top-down activation in the reverberation process. 

SIMULATIONS OF EMPIRICAL DATA 

In the previous section, we established that the underlying 
structure of Western harmony can be learned via mere exposure by 
a self-organizing neural net. In this section, we report simulations 
showing that the learned model behaves much as human partici- 
pants do in a range of experiments on the perception of tonality. 

Once the key of a musical context is established, tones and 
chords are perceived in a hierarchy of stability. In particular, the 
tones of the tonic triad and the chords built on the first, fifth, and 
fourth scale degree of the key are perceived as being more stable 
than the other events (Bharncha & Krumhansl, 1983; Krumhansl, 
1979, 1990; Krumhansl et al., 1982; Krumhansl & Kessler, 1982). 
The psychological distance between two tones (or chords) de- 
creases as the stability of these events in the key context increases. 
The psychological distance between two keys decreases as the 
correlation between the tone (or chord) stability profiles of these 
keys increases. The Western hierarchy of stability influences psy- 
chological distances between events according to three contextual 
principles articulated by Krumhansl (1990; Bharucha & Krum- 
hansl, 1983; Krumhansl et al., 1982). The first principle, contex- 
tual identity, states that the psychological distance between two 
instances of the same event decreases as the stability of the event 
increases in the key context. For example, the psychological dis- 
tance between two C-major chords is smaller in a C than in an 
F~-major key context. The second principle, contextual distance, 
states that the psychological distance between two distinct events 
decreases as the stability of the events increases in the key context. 
The psychological distance between the C- and G-major chords is 
smaller in a C- than in an F~-major key context. The third 
principle, contextual asymmetry, reflects the importance of tem- 
poral order on psychological distance. The distance between two 
events decreases when the more stable event occurs after the less 
stable one. For example, the psychological distance from an FI¢- to 
a C-major chord is smaller in a C-major key context than in an 
F~-major key context. These three principles govern the organi- 

zation of musical events in perception and memory, such that 
highly stable events are perceived as being more closely related to, 
and more easily confused with, each other and previously pre- 
sented less stable events than the reverse. They are also more 
expected and are preferred as good endings. 

The simulations were run with the experimental material used in 
the chosen set of empirical studies, and the activation levels of the 
units in the network were interpreted as levels of stability. The 
more a unit (i.e., a chord unit, a tone unit) is activated, the more 
stable the musical event is in the corresponding context. If the 
trained networks are to serve as good models, they should mirror 
the human data. 

Simulations of chord sequences are presented first because these 
are the types of stimuli with which the network was trained. They 
are followed by simulations on perceived relations between keys 
and between tones. Most of the simulations were run with the four 
trained networks described previously. Given the strong similarity 
between these networks, the outcomes of these simulations did not 
vary qualitatively as a function of the network. In the interest of 
brevity, only simulations run with the SIC-2 network are presented 
here. s 

Perceived Relations Between Chords 

The perceived relations between chords have been studied with 
different experimental paradigms. The following section presents 
simulations of experimental data that were based on similarity 
judgments of pairs of chords, memory performances, and har- 
monic expectations. 

Similarity Ratings 

Human Performance 

In similarity rating experiments, listeners were presented with a 
pair of target chords after a given key context (Bharucha & 
Krumhansl, 1983; Krumhansl et al., 1982). Listeners rated the 
similarity of the two target chords on a 7-point subjective scale. 
The target chord pairs were all pairwise combinations of the 
chords from the C- and Fl~-major keys. The key context was 
established by a set of three chords ending with a perfect cadence 
(IV-V-I). Five context keys (C, G, A, B, and F~ major) were 
manipulated to vary in terms of their distances from C and F~ 
major on the cycle of fifths (see Figure 1): G major is one step 
away from C major and five from F~ major; the reverse is true for 
B major, and A major is as far from C major as from F~ major 
(three steps). 

As shown in Figure 9 (top left), the average ratings for pairs of 
chords in C major were the highest in the C-major key context. 
These ratings decreased linearly as the distance between the con- 
text key and the C-major key increased on the cycle of fifths. An 
inverted pattern was observed for pairs of chords in F~ major. 
Results supported the contextual distance principle: The perceived 
similarity of two chords is proportional to their stability in the key 
context. Contextual asymmetry was supported by ratings for mixed 

8 The parameters (cf. Equation 1) were adapted from Bhamcha (1987b) 
with d = .4 for decay rate and t = 1 for the lime elapsed since the last 
offset, unless otherwise noted. 
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Figure 9. Top: Average ratings for pairs of diatonic triads in the same key 
(left) and in different keys (right) presented as a function of the key 
contexts of C major, G major, A major, B major, or F~ major (data from 
Bharucha & Krumhansl, 1983, and Krumhansl, Bharucha, & Castellano, 
1982). Bottom: Average activations of the second target chord unit after a 
first target in the same key (left) or in a different key (right) presented as 
a function of the five key contexts. 

pairs of chords (e.g., with one chord in C major and one in F~ 
major). In a C-major key context, the similarity ratings were higher 
when a chord from the C-major key occurred after a chord from an 
F~-major key. This asymmetry vanished and reversed when the 
key context was progreSsively shifted from the C- to the F~-major 
key (Figure 9 top right). 

Simulation 

In the simulation, as in the experiment, the five key contexts (C, 
G, A, B, and F~ major) were established by a IV-V-I cadence. The 
target chord pairs were defined by all combinations of the major 
and minor chords from the C- and F~-major keys. The three-chord 
cadences plus the first target chord of each pair were presented to 
the SIC-2 network. The activation level of the unit representing the 
second target chord, before its occurrence, was taken as output. 
Figure 9 (bottom) displays the average activation of units repre- 
senting the second target chord. When both chords of the pair came 
from the C-major key, the activation of the second target chord 
was high in the C-major key context and decreased linearly as the 
distance between the context key and the C-major key increased 
around the cycle of fifths. An inverted pattern was observed for 
pairs of chords in F~ major. The network thus replicated the 
contextual distance principle observed for human participants. 
Contextual asymmetry was also reproduced by the network. The 
activation of the second target chord was stronger when the second 
chord of the pair was more stable in the context than the first. 
When the second chord belonged to the C-major key, this asym- 
metry vanished and then reversed as the key context was progres- 
sively shifted from the C- to the F~-major key. When the second 
chord belonged to the Fg-major key, this asymmetry increased 
when the key context was progressively shifted from the C- to the 
F~-major key. 

Recognition Memory 

Human Performance 

In recognition memory experiments, participants were required 
to judge whether or not standard and comparison sequences of 
seven chords were identical (Bharucha & Krumhansl, 1983). Eight 

experimental conditions were distinguished. In Conditions 1 to 3, 
the comparison sequence was identical to the standard ("same" 
condition). In Condition 1, all chords of the standard sequence 
belonged to a same key. In Condition 2, one chord was nondia- 
tonic. In Condition 3, chords were randomly chosen from different 
keys. In Conditions 4 to 8, the comparison sequences differed by 
one chord from the standard sequence ("different" conditions). A 
diatonic chord of the standard sequence was replaced in the com- 
parison sequence by either a diatonic chord (Condition 4) or a 
nondiatonic chord (Condition 5). In Conditions 6 and 7, the stan- 
dard sequences contained one nondiatonic chord that was replaced 
by either a diatonic chord (Condition 6) or another nondiatonic 
chord (Condition 7). In Condition 8, the standard sequences con- 
tained a random set of nondiatonic chords, and one of them was 
replaced by another randomly chosen chord. 

Figure I0 (top) displays the percentage of correct responses for 
each condition in the original experiment (Bharucha & Krumhansl, 
1983). When the standard and comparison sequences were iden- 
tical, the correct "same" judgments were more numerous for 
Diatonic Condition 1 than for Nondiatonic Condition 2 and Ran- 
dom Condition 3. This finding illustrates the principle of contex- 
tual identity: Recognition of two instances of the same event is 
easier when the event is stable in the key context. When the 
standard and comparison sequences differed, the correct "differ- 
ent" judgments were inversely related to stability: Fewer correct 
responses were observed when a chord of a standard diatonic 
sequence was replaced by a chord belonging to the key context 
(Condition 4). The number of correct "different" judgments in- 
creased when no key context was established in the standard 
sequence (Condition 8) and when a nondiatonic chord of the 
standard sequence was replaced by another nondiatonic chord in 
the comparison sequence (Condition 7). These findings illustrate 
the principle of Contextual Distance: Stable diatonic chords in a 
tonal context are more easily confused (low performance for 
Condition 4) than chords without a tonal context (Condition 8) or 
unstable nondiatonic chords (Condition 7). The data were also 
consistent with the contextual asymmetry principle. Fewer "dif- 
ferent" judgments were observed when a nondiatonic chord was 

lcontext..,i en ty ] [contexta  is nce] Ioontex , y  yl 
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different 
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Figure 10. Top: Percentages of correct responses in the eight experimen- 
tal conditions (see explanations in the text), separated for same and 
different targets. From "The Representation of Harmonic Structure in 
Music: Hierarchies of Stability as a Function of Context," by J. J. Bharucha 
and C. L. Krumhansl, 1983, Cognition, 13, p. 86, Experiment 2, Table 1. 
Copyright 1983 by Elsevier Science. Reprinted with permission from 
Elsevier Science. Bottom: Average activation values of the target chord 
unit in the comparison sequence for the eight experimental conditions. 
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replaced by a diatonic chord in the comparison sequence (Condi- 
tion 6) than when a diatonic chord was replaced by a nondiatonic 
chord (Condition 5). This indicates that stable events are more 
easily confused with previously presented unstable ones than the 
reverse. 

Simulation 

For each experimental condition, simulations were run with a 
sample of 18 sequences taken from Bharucha and Krumhansl 
(1983). In the original experiment, the changed target chord was 
located in Serial Positions 2 through 6 in the sequence. Given that 
no interaction of serial position was found, the target chord was 
always placed in the fourth serial position for the present simula- 
tions. For one half of the "different" trials, the fourth chord of the 
standard sequence was major and was replaced by a minor chord 
in the comparison sequence. For the other half, the fourth chord 
was minor and was replaced by a major chord. 

Standard sequences were presented to the SIC-2 network fol- 
lowed by the first three chords of the comparison sequences. 
Activation was read off the chord unit corresponding to the fourth 
chord of the comparison sequence. According to the principle of 
contextual identity, stable events are more easily recognized as 
being identical than are less stable ones. Therefore, activation in 
the network should be positively correlated with the number of 
correct responses in the three "same" experimental conditions. 
According to the principles of contextual distance and contextual 
asymmetry, however, stable events in a given context are more 
easily confused with previously presented events than are less 
stable ones (resulting in lower performance for stable events in the 
"different" conditions), the strength of this confusion varying as a 
function of the temporal order of the event (with a stable event 
being more easily confused with an unstable event than the re- 
verse). Accordingly, activation in the network should be nega- 
tively correlated with the number of correct responses in the 
"different" experimental conditions. The network is not trained to 
recognize the specific sequences. Instead, the activation levels that 
reflect tonal stability of the target in the context are predicated to 
mirror participants' pattern of performance. 

Figure 10 (bottom) displays the activation of the target chord 
units in the comparison sequence. For the "same" conditions, 
higher activation was observed for diatonic targets (Condition 1) 
than for nondiatonic targets in tonal contexts (Condition 2) or 
targets in random contexts (Condition 3). The activation pattern 
was in accordance with the human data, showing better recognition 
performance for stable events. For the "different" conditions, ac- 
tivation for diatonic targets (Conditions 4 and 6) was higher than 
for nondiatohic targets (Conditions 7 and 5) or random targets 
(Condition 8). Once again, these activation levels mirror behav- 
ioral results: In comparison to unstable nondiatonic target chords, 
stable diatonic targets are more easily confused with other chords 
(diatonic or nondiatonic). 

Harmonic Expectation 

Harmonic expectation has been studied in different ways. Har- 
monic priming studies have explored how a previous context 
influences the processing of a target chord. These studies ad- 
dressed the influence of a single chord (Bharucha & Stoeckig, 

1987; Tekman & Bharucha, 1998), long chord sequences (Bigand 
& Pineau, 1997), and the mutual influence of global and local 
contexts (Tillmann, Bigand, & Pineau, 1998). Harmonic expecta- 
tion has also been observed at a neurophysiological level. Using 
ERP, unexpected events were associated with a larger late posi- 
tivity than expected ones (Patel, Gibson, Ratner, Besson, & Hol- 
comb, 1998). In a neural network, expectedevents should corre- 
spond to the units most activated by the previous context. 

Harmonic Priming 

Human performance in single-chord priming. In single-chord 
priming experiments, participants heard a prime chord followed by 
a target chord and had to decide as quickly as possible whether the 
target was or was not in tune. In Bharucha and Stoeckig (1987), the 
prime and target were either closely related (e.g., C- and B b-major 
chords) or distantly related harmonically (C- and F~-major 
chords). Priming was shown by more accurate and faster process- 
ing of in-tune targets when they were related to the prime. In 
Tekman and Bharucha's (1998) study, two types of target were 
selected: One was more psychoacoustically similar to the prime 
(e.g., E- and C-major chords), the other more closely related on the 
basis of harmonic convention (D- and C-major chords). The results 
revealed facilitation for psychoacoustically similar targets for a 
short (50 ms) SOA, and facilitation for harmonically related targets 
after a longer SOA (500 ms or longer). 

Simulation. To simulate the priming results of Bharucha and 
Stoeckig (1987), the prime chords were presented to the SIC-2 
network and the activation of target chord units was read off. For 
convenience, the results in Figure 11 are presented with reference 
to a C-major chord prime. After a C-major chord prime, activation 
was higher for harmonically related targets (B b major) than for 
harmonically unrelated targets (F~ major). The SIC-2 network 
thus accounts for the asymptotic facilitation of the processing of 
related chords. To model the findings reported by Tekman and 
Bharucha (1998), the network was presented with the prime 
chords, and activation of the target chords was read off in early 
activation cycles (representing bottom-up activation) and at equi- 
librium (with top-down influences). The former simulated the 
short SOA and the latter, the longer SOA. As shown in Figure 1 l, 
the pattern of activation changed qualitatively during the reverber- 
atory cycles from initial activation to equilibrium. At the outset, 
the pattem of activation reflected the number of tones shared by 
the prime and the target, whereas at equilibrium the pattern re- 
flected conventional relatedness: the distance around the cycle of 

Bharucha  & Stoeckig,  1987 Tekman  & Bharucha,  1998 
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Figure 11. Left: Activation level for target chord units Gb/Ft~ and 
B b/A~ after the presentation of a C-major chord prime (see Bharucha & 
Stoeckig, 1987). Right: Activation level for target chord units D and E after 
the presentation of a C-major chord prime at early reverberation cycles and 
at equilibrium (see Tekman & Bharucha, 1998). 
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fifths. The temporal course of activation in the model mirrored the 
priming results. 

Human performance in chord sequence priming. Harmonic 
priming has also been examined using longer contexts. In a study 
by Bigand and Pineau (1997), the local context surrounding the 
target chord was kept constant, but the harmonic function of the 
target was manipulated by varying the global context (see prior 
discussion for more details). Participants were faster and more 
accurate in their intonation judgment when the target chord acted 
as a stable tonic chord rather than as a less stable subdominant 
chord. Tillmann, Bigand, and Pineau (1998) investigated the com- 
bined influence of global and local context. The target's related- 
ness to the prime was manipulated at both a global and a local 
level. For example, in a C-major key, the target chord was globally 
and locally related (GRLR) when it was a tonic chord (C) and was 
preceded by a dominant chord (G). It was globally related but 
locally unrelated (GRLU) when the preceding dominant chord was 
played one semitone higher (GI~). In this case, the target and the 
preceding chord did not belong to the same key. The target was 
globally unrelated but locally related (GULR) when only the first 
six chords of the sequences were transposed one semitone above 
(i.e., in the C$-major key). Here the key of the first six chords was 
weakly related to the keys of the target chord and its preceding 
chord (i.e., C and G major keys). Finally, the target chord was both 
globally and locally unrelated (GULU) when the first seven chords 
were transposed one semitone higher (in the C$-major key). The 
performance of participants demonstrated a strong effect of both 
global and local contexts. Target chords were processed more 
accurately and quickly when they were locally or globally related 
to the previous context. Furthermore, the effect of global context 
tended to be more pronounced at a fast than at a slow tempo. 

Simulation. The first simulation was of the global context 
effects reported by Bigand and Pineau (1997). The first seven 
chords of the 20 sequences used in each experimental context were 
presented to the SIC-2 network, and the activation of the target 
chord unit was read off. As shown in Figure 12 (left), the target 
chord unit received stronger activation in the expected context 
when it acted as a stable tonic chord (I) than in the unexpected 
context when it was a less stable subdominant chord (IV). The 
second simulation was of the combined effects of global and local 
contexts reported by Tillmann, Bigand, and Pineau (1998). Simu- 
lations were run with the first seven chords of each sequence for 
two tempi. For the fast-tempo condition, the t parameter (cf. 

Bigand & Pineau, 1997 Tillmann et al., 1998 

Exp. Unexp. GR GU GR GU 
Slow Tempo Fast Tempo 

Figure 12. Left: Activation level for target chord units in the expected 
(Exp.) and unexpected (Unexp.) conditions used in Bigand and Pineau 
(1997). Right: Activation level for target chord units as a function of global 
context, local context, and tempo (Tillmann, Bigand, & Pineau, 1998). 
GR = globally related; GU = globally unrelated; LR = locally related; 
LU = locally unrelated. 

Equation 1) was set to 1 and in the slow condition to 1.5. This 
change in t (from 1 to 1.5) corresponded to the percentage change 
in tempo from the slow to the fast condition. The activation of the 
target chord unit depended on whether one or two sources of 
priming were present (see Figure 12, right). It was the highest for 
the GRLR condition, because both contexts were related to the 
target chord. Activation decreased for GRLU and GULR, respec- 
tively, with only one context related to the target. It was the lowest 
for GULU, in which the target chord had no relation to the 
previous context. At a slow tempo, the global and the local 
contexts exerted roughly similar effects. At a fast tempo, however, 
the global context strongly prevailed over the local context. The 
activation pattern in the neural net globally mirrored the combined 
influence of global and local context, as well as the impact of 
tempo on the global context effects observed with human partic- 
ipants (Tillmann, Bigand, & Pineau, 1998). 

ERP 

Patel et al. (1998) measured ERPs for target chords occurring in 
the middle of musical sequences. The target chord varied in the 
degree of relatedness to the context: It was the tonic of the actual 
key, the tonic of a nearby key (three steps around the cycle of 
fifths), or the tonic of a distant key (five steps around the cycle of 
fifths). The out-of-key targets elicited late positivities of different 
amplitudes, depending on their harmonic distance from the context 
key. The ERP waveforms between 500 ms and 800 ms were 
clearly distinguished in positivity for the three target chords: The 
positivity was the largest for distant-key targets, and its amplitude 
decreased for the nearby-key targets and then for the same-key 
targets. The authors interpreted the positivity as manifesting the 
difficulty of fitting a given chord into the context. In addition, 
participants judged the musical sequences with the same-key, 
nearby-key, and distant-key target chords as acceptable on 80%, 
49%, and 28% of the trials, respectively. 

Simulation. The simulation was run by presenting the chords 
of the musical sequence preceding the target chord (Patel et al.'s 
1998, Figure 5). The activations of chord units representing the 
three targets were then read off. Activation was the highest for the 
same-key target followed by the nearby-key target and was the 
lowest for the distant-key target (Figure 13). This activation hier- 
archy for the targets reflects the pattern of ERP data and subjective 
judgments about musical coherence. The more the target chord 
was activated by the context, the smaller was the amplitude of the 
ERP waveform and the greater was the likelihood of judging the 
whole sequence as being acceptable. The activations are inter- 
preted as the levels of expectation for incoming events. Strictly 
speaking, the ERP data reflect the response to the target itself, with 
stronger positivity for unexpected targets. A second simulation 
was run to analyze the change of the network's activation as a 
result of the presentation of the target. For each of the three target 
chord units, the difference in activation before and after the target 
was calculated. The activation difference was the strongest for the 
distant-key target, decreased for the nearby-key target, and then 
decreased further for the same-key target. This result thus mirrored 
the amount of positivity in the ERP waveforms that was observed 
for the three targets. 
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s a m e  n e a r  d i s t a n t  

Figure 13. Activations for the three target units (same, near, and distant 
key) used in the musical sequence in Patel, Gibson, Ratner, Besson, and 
Holcomb (1998). 

Perceived Relations Between Keys 

In the simulations presented thus far, the underlying key re- 
mained the same in a given context. The network model simulates 
the perceived changes in chord stability caused by different key 
contexts. The changes in stability, in turn, affect similarity ratings, 
recognition accuracy, and harmonic expectation. In most Western 
musical pieces, however, temporary changes in key (referred to as 
modulation in music theory) often occur. The extent of a modu- 
lation depends on the harmonic distance between the main key and 
the new key. Modulation is a crucial feature of Western music that 
is relevant from both stylistic and expressive points of view. In the 
classical period (Haydn and Mozart), modulations occur primarily 
between closely related keys. In the last romantic period (Wagner), 
however, shifts toward harmonically unrelated keys became more 
sudden and frequent. Empirical research suggests that listeners 
possess implicit knowledge of the distance between keys (Bha- 
rucha & Krumhansl, 1983; Cuddy, Cohen, & Miller, 1979; Holle- 
ran et al., 1995; Krumhansl et al., 1982) and manage to detect 
modulations occurring in musical pieces (Cuddy & Thompson, 
1992a, 1992b; Krumhansl & Kessler, 1982, Experiment 2; Platt & 
Racine, 1994; Thompson & Cuddy, 1989). The following simula- 
tions investigated whether the network can account for psycholog- 
ical distances between keys and can reproduce listeners' changing 
sense of key. 

network defined the activation profile specific to the C-major key. 
To compare the network performance and Krumhansl's findings, 
the activation profile specific to the C-major key was shifted to the 
different tonics of the 11 other major keys, and the 12 activation 
profiles were then intercorrelated. As shown in Figure 14, the 
pattern of correlations derived from the network reflected the cycle 
of fifths. Although the peaked curve based on participants' ratings 
differed slightly from the smooth curve based on activations, the 
correlation between human data and the model was significant, 
r(10) = .793, p < .01. Data based on both participants' ratings and 
activation of the model suggest that a key context imposes a 
hierarchical organization of chords, and these hierarchies are more 
similar for closely related keys than for distant keys. Similarity 
ratings and the activations of neighboring keys on the cycle of 
fifths (e.g., C and either G-major or F-major keys) were positively 
correlated. Negative correlations were observed for distant keys on 
the cycle of fifths (e.g., C- and F~-major keys). The local peaks in 
the participants' profile observed for A major and D~ major can be 
understood as deriving from the parallel and relative major-minor 
key relationships with C major (e.g., A major is the parallel major 
of a minor, which is the relative minor of C major). The network 
does not include minor keys, which may be the origin of the 
missing peaks in the network's correlation profile. 

Perceiving Key and Modulation 

Human Performance 

Krumhansl and Kessler (1982, Experiment 2) investigated how 
listeners develop a sense of key and how they assimilate modula- 
tions to new keys. The chord sequences used in the experiment 
remained in the same key (no modulation), modulated toward a 
closely related key (close modulation), or modulated toward a 
more distant key (remote modulation). Table 2 displays examples 
of the three types of sequences used. In the modulating sequences, 
the first three chords established the first key with a perfect 
cadence (V-I). The last three chords formed a perfect cadence in 
the new key either one step away (close modulation) or two steps 

Quantifying Interkey Distances From 
Harmonic Hierarchy 

Human Data .~ 1- 
.& 

According to Krumhansl (1990), psychological distances be- ~ . 5 -  
tween keys may be derived from the perceived tone or chord 
hierarchy induced by a given key context. In one experiment ~ 0-  
(Knunhansl, 1990, p. 182), participants rated on a 7-point scale 
how well the 12 major chords fit with a given major key context - . 5 -  
established by a short sequence. Harmonic hierarchies found for a 
given key were then shifted to the 11 other major keys. These 12 -1 
hierarchy profiles were then intercorrelated. The pattern of corre- 
lation (Figure 14) approximates the music theoretical distances 
between major keys on the cycle of fifths. 

Simulation 

A simulation was run with the same C-major context as in the 
experiment. The activation of the 12 major chord units of the 

- - -o - - Krumhansl  199~ "-_.. M..._odel 

~0"" 0 .  o .0  -o.y 
l I I I I I i v  l I i i i 

C G D A E B F# C # G #  D# A# F 

Figure 14. Correlation between the C-major context and the 12 major 
contexts for participants' ratings and for activation values of major chord 
units in the learned connectionist model. From Cognitive Foundations of 
Musical Pitch (p. 183, Table 7.10), by C. L. Krumhansl, 1990, Oxford, 
England: Oxford University Press. Copyright 1990 by Oxford University 
Press. Used by permission. 
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Table 2 
Three of the Chord Sequences Used by Krumhansl and Kessler 
(1982, Experiment 2) 

Chord number 

Sequences 1 2 3 4 5 6 7 8 9 

No modulation (C major) 
Sequence F G a F C a d G C 
Probe-tone method F C C F/C C C C C C 
Model F C C F C C C C C 

Direct and close modulation (C major --~ G major) 
Sequence F G C a e b e D G 
Probe-tone method F C C C C/G G G G G 
Model F C C C G G G D G 

Indirect and remote modulation (C major ~ B b major) 
Sequence F G C a F g Eb F Bb 
Probe-tone method F C C C C C Bb Bb Bb 
Model F C C C F F Bb B}, Bb 

Note. The second line indicates the inferred keys based on probe-tone 
judgments. The third line indicates the most activated key units in the 
connectionist model. 

away (remote modulation) from the first key on the cycle of fifths. 
Several intermediate pivot chords belonging to both keys allow a 
smooth modulation from one key to another. In the remote mod- 
ulation, only the fifth chord of the sequences was a pivot chord. 
However, the fifth and the sixth chords may also be analyzed as 
belonging to the F-major key, a key between the C- and the 
B b-major keys on the cycle of fifths. 

After each chord of the sequence, participants rated on a sub- 
jective scale how well each of the 12 tones of the chromatic scale 
fits with the preceding context (probe-tone ratings). The develop- 
ment of participants' sense of key was tracked by correlating these 
probe-tone ratings with the tonal hierarchy profile specific to each 
key. 9 The strongest correlation between the probe-tone ratings and 
a given key profile indicates which key is induced at each point in 
the chord sequence. Tracing the change in probe-tone ratings thus 
yields the trajectory of the key over the course of the sequence. 
Krumhansl and Kessler's (1982) probe-tone ratings analysis may 
be summarized as shown in Table 2. For all three major key 
sequences, the probe-tone judgments after the first chord corre- 
lated strongly with the F-major key. For the nonmodulating se- 
quence, the sense of the C-major key started to become instilled 
after the second chord (G major) and increased thereafter. Some 
local effects of the individual chords were evident in the probe- 
tone ratings. For example, the fourth chord (F major) tended to 
increase the correlation between the probe-tone ratings and the 
F-major key profile. For the two modulating sequences, the sense 
of the first key (C major) was clearly instilled with the third chord 
of the sequence (C-major chord). For the close modulation se- 
quence, the sense of the second key appeared on the fifth chord and 
was clear from the sixth chord until the end of the sequence. For 
the remote modulation sequence, the sense of the new key was 
firmly established with the seventh chord of the sequence. 

Simulation 

Simulations were run with the three sequences displayed in 
Table 2. After each chord, the activation pattern of the key layer 

was read off. The key unit with the maximum activation at each 
point in the sequence was taken to be the key most strongly 
induced in the network at that point in time. Table 2 shows the 
tracked keys for each chord in the three sequences. For all se- 
quences, the key tracked after the first chord reflected the key of 
which this chord was the tonic (i.e., F major). Adding a G-major 
chord shifted the maximum activation to the C-major key unit. It 
is worth noting that the model detected the underlying C-major key 
even though the actual C-major chord was not presented. For the 
subsequent chords, the most activated key unit changed in the 

course of the sequence. In the nonmodulating sequence, C major 
remained the most activated key unit until the end of the sequence, 
with only one exception: on the fourth chord (F-major chord) the 
key of F major was more active in the network than the key of C 
major. This finding reflects the local influence of the fourth chord, 
also observed by Krumhansl and Kessler (1982) with human 
participants. For the two modulating sequences, the key of C major 
remained the most active key unit until the fourth chord. For the 
close modulation sequence, the activation of both G- and C-major 
key units was high on the fifth chord (the pivot chord) with a slight 
advantage for the G-major key unit. For the remaining chords, the 

G-major key was the most active unit, except on the eighth chord. 
This chord (D major) produced the highest activation for the 
D-major key, a key closely related to the G-major key. ~° For the 
remote modulation sequence, the key unit of F major was the most 
active on the fifth and sixth chords of the sequence. After the 
seventh chord, the Bb major key unit received the strongest 
activation until the end of the sequence. The network thus tracked 
the modulation around the cycle of fifths: starting in C major and 

going over F major to B b major. 
As shown in Table 2, the changing sense of key in human 

participants shares several features with the network's perfor- 
mance. The critical feature for both is that the inferred key was 
generally not instantiated by the actually presented chord. The 
sense of a key prevailed even though the tonic chord was not 
present. This suggests that, for both humans and the network, a key 
refers to a more abstract level of structure than just a collection of 
chords. This finding is even more remarkable when a modulation 
occurs in the chord sequence. For example, in the close modulation 
sequence, both the model and the participants inferred the key of 

G major on the fifth chord of the sequence, even though no 
G-major chord had been presented. A similar result was obtained 
in the remote modulation, in which both participants and the model 
inferred the key of B b major on the seventh chord of the sequence, 
even though no B L, chord had been presented. The last main 
correspondence between the performance of the participants and 
the model concerned the time course of the changing sense of key. 

9 In a previous experiment (Krumhansl & Kessler, 1982, Experiment 1), 
probe-tone ratings were obtained for contexts that unambiguously instilled 
a major or minor key. These rating profiles showed highest ratings for the 
tonic tone, followed by the third- and fifth-scale degrees, with the lowest 
ratings for nondiatonic tones. They agreed with tonal functions defined by 
music theory and were considered distinctive markers of the instilled key. 

lo In the present case, this strong local influence of the D-major chord 
might be due to the fact that the preceding b minor and e minor chords both 
belong to the G-major and D-major keys. 
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The sense of a change in key generally occurred for the same 
chords in the sequences in both human and model performance. 

Perceived Asymmetry in Modulation 

Other empirical studies investigated how listeners' sensitivity to 
key change may be influenced by both the distance and the 
direction of modulation on the cycle of fifths (Cuddy & Thomp- 
son, 1992a, 1992b; Thompson & Cuddy, 1989). In these studies, 
short chord sequences were adapted from Bach chorales and either 
did or did not modulate. In modulating sequences, the new key 
established at the end of the sequence was either one or two steps 
on the cycle of fifths from the first key in either a clockwise or 
counterclockwise direction. In other words, the chord sequences 
modulated either to the dominant key (one step clockwise), to the 
subdominant key (one step counterclockwise), to the supertonic 
(two steps clockwise), or to the flattened seventh (two steps 
counterclockwise). 

Human Performance 

In Cuddy and Thompson's (1992a) study, probe-tone ratings 
were obtained at the end of each sequence. With nonmodulating 
sequences, participants' ratings were highly correlated with Krum- 
hansl's profile for the key of the sequence (Table 3). The corre- 
lation decreased as the distance between the first and the second 
keys increased on the cycle of fifths. Listeners differentiated 
between slight (one step) and strong (two steps) key movement. 
The critical new finding of this experiment was an asymmetry in 
key movement. For both distances, the decrease in correlation was 
more pronounced for counterclockwise than for clockwise modu- 
lations. This outcome demonstrated that the changing sense of key 
was stronger when the sequence moved toward the subdominant 
than toward the dominant key or when the sequence moved toward 
the flattened seventh than toward the supertonic key. Thompson 

and Cuddy (1989) reported converging evidence for perceived 
asymmetry in modulation, obtained with a different experimental 
task. 

Simulation 

Simulations were run with the modulating and nonmodulating 
sequences that Cuddy and Thompson (1992a) used. The dominant 
seventh chords that introduced the counterclockwise modulations 
were presented to the input (tone) layer, even though the model 
had not learned this chord type. To compare human and model 
performance, the state of the key layer at the end of the sequence 
was correlated with the state of the key layer after a context in the 
first key. These correlations reflect the network' s sensitivity to key 
change: The higher the correlation, the smaller is the shift in tonal 
organization between the first and second keys. As shown in 
Table 3, the highest correlation in the network was found for 
nonmodulating sequences. The correlation then decreased as the 
distance between the first and second keys increased on the cycle 
of fifths. The network also reproduced the perceived asymmetry in 
modulation: For each distance, counterclockwise modulations 
caused a stronger decrease in correlation than clockwise modula- 
tions. In addition, the correlation with the second key was evidence 
that the network correctly identified the second key of the se- 
quence. Interestingly, the correlation with the second key showed 
a weak asymmetry, comparable to the one observed with human 
participants (see Table 3). 

Perceived Relations Between Tones 

Once the key of a musical context is established, the 12 tones of 
the chromatic scales are perceived in a hierarchy of stability 
(Cuddy et al., 1981; Franc~s, 1958; Krumhansl, 1979, 1990). In 
major key contexts, the tonic (first scale degree) is perceived as 
more stable than the dominant (fifth scale degree), which in turn is 

Table 3 
Correlation Between Probe-Tone Ratings and Tonal Hierarchies of the Principal Key in 
Nonmodulating Sequences and of the First or Second Key in Modulating Sequences 
(Cuddy & Thompson, 1992a) and Between the State of the Key Layer in SIC-2 
at the End of the Sequence and After a Context in the First or Second Key 

Sequences Cuddy& Thompson SIC-2 

Nonmodulating .91 .978 

First key Second key 

Cuddy & Thompson SIC-2 Cuddy & Thompson SIC-2 

Clockwise 
One step .87*** .92** .83*** .9917"** 
Two steps .53** .86** .91"** .9998*** 

Counterclockwise 
One step .71"** .61" .78*** .9898*** 
Two steps .31 .52 .83*** .9993*** 

Note. Cuddy and Thompson (1992a) data are from "Asymmetry of Perceived Key Movement in Chorale 
Sequences: Converging Evidence From a Probe-Tone Analysis," by L. L. Cuddy and W. F. Thompson, 1992, 
Psychological Research, 54, p. 57, Table 3. Copyright 1992 by Springer-Verlag. Reprinted with permission. 
SIC = sparse input coding. 
*p <.05. **p <.01. ***p<.001. 
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perceived as more stable than the mediant (third scale degree). 
Tones of the other scale degrees are perceived as less stable yet 
more stable than nondiatonic tones. These empirical findings lead 
to a challenging hypothesis for the present network. Given that 
tones are linked to chords, which in turn are linked to keys, the 
network may have internalized some of the Western relationships 
between tones and keys even though it had never been exposed to 
Western melodies. Because activation reverberates from key to 
chord units and from chord to tone units, the network potentially 
may account for top-down influences of the key context on per- 
ception and memory for individual tones. 

Probe-Tone Ratings 

Human Dam 

In Krumhansl and Kessler's experiment (1982), participants 
were presented with a key context followed by each of the 12 tones 
of the chromatic scale as probe tones. Participants rated on a 
7-point scale how well the probe tone fits with the previous key 
context. The key context was established by either an ascending or 
descending scale, a single major or minor chord, or a short chord 
sequence in a major or minor key. Average ratings defined a key 
profile specific to a given key. The C-major and c-minor key 
profiles are shown in Figure 15 (bottom). In both cases, diatonic 
tones provided a better fit with the context than did nondiatonic 
tones. Among diatonic tones, the highest ratings were observed for 
the tonic tone, followed by the tones of the third and fifth scale 
degrees, which together with the tonic form the tonic triad chord. 

Simulation 

In the following simulations, the tones of a C-major chord 
(containing the tones C, E, G) or a c-minor chord (containing the 
tones C, D~/E~,, G) were presented to the network. During rever- 
beration, chord units sent phasic activation to the tone layer. The 
units in the tone layer accumulated phasic activation through 
spatial and temporal summation until equilibrium was reached. 
The accumulated phasic activation of tone units at equilibrium is 
displayed in Figure 15 (top). After the presentation of a C-major 

chord, several tone units other than the three sounded tones (C, E, 
and G) were activated. The diatonic tone units (C, D, E, F, G, A, 
B) received more activation than the nondiatonic tone units (C~, 
D~, F~I, G~, A~), with a reduced activation for the tone B. This 
activation profile reflected the top-down influences of the tonic 
key of the presented chord. After the presentation of a c-minor 
chord, the tone units corresponding to the descending minor scale 
(C, D, D~/E~,, F, G, G~/A~,, AIUB b) received stronger activation 
than the other tone units, even though several tones were not 
present in the c-minor chord that was played. The C-major and 
c-minor activation profiles were clearly different. Interestingly, 
these differences were reflected in the activation of noncomponent 
tone units of the two chords. For example, the tone A belongs to 
neither the C-major chord nor the c-minor chord. Nevertheless, the 
tone A was more activated by a C-major chord than by a c-minor 
chord. This difference reflects key membership: the tone A be- 
longs to the C-major key but not to the c-minor key. The opposite 
was observed for the tone B b, which belongs to the c-minor key 
but not to the C-major key. 

At equilibrium, the profiles of phasic activation reflected glo- 
bally the relative stability of the 12 chromatic tones in a given key 
context and were correlated with Krumhansl's key profiles, 
r(10) = .89, p < .01, for major key contexts, r(10) = .83, p < .01, 
for minor key contexts. Some differences were nevertheless ob- 
served between the profiles of humans and of the model. Although 
the model clearly inferred the remaining diatonic tones from the 
tonic triad input, the difference in accumulated phasic activation 
between the tonic triad tones and the other diatonic tones was not 
as great as in the human data, almost as if the learned cultural 
knowledge exerted an influence so strong that the stimulus itself 
was no more strongly represented than what was inferred from it. 
It has been suggested that listeners' responses in a probe-tone 
situation reflect not only implicit knowledge of Western hierarchy 
but also the influence of short-term memory of the tones played in 
the stimulus context (Butler, 1989; Deutsch, 1972). Given that 
participants may have been partly influenced by short-term mem- 
ory of the stimulus tones, multiple regression analyses were per- 
formed to predict human probe-tone ratings from phasic activation 
and activation from the stimulus alone (Figure 15 bottom). A linear 

I C major chord I 

C C#D D#E F F# G G # A A # B  

c minor chord [ 

C C#D D#E F F# G G# A A# B 

I -o- Observed ~ Predicted I 

C C# D D#E F F# G G# AA# B 12 (2# D D# E F F# G G# AA# B 

Figure 15. Top: Activations received by the tone layer during reverberation after the presentation of a C-major 
and a c-minor chord. Bottom: Observed similarity ratings from Krumhansl and Kessler (1982, Experiment 1; 
adapted by permission of the author) and results of regression analysis for C-major and c-minor chord. 
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combination of these factors provided a good fit for probe-tone 
ratings for major key, R = .93, F(2, 9) = 27.39, p < .001, and for 
minor key, R = .93, F(2, 9) = 27.10, p < .001. This suggests that 
Krumhansl's key profiles may be reproduced in the network by an 
additive combination of phasic activation reverberating to equilib- 
rium and activation resulting directly from the stimulus. 

Perceived Asymmetry Between Tones 

Human Performance 

Stable tones in a given key context act as cognitive reference 
points (Krumhansl, 1979, 1990) to which the other less stable 
tones are anchored (Bharucha, 1984, 1996). Stable reference points 
influence similarity ratings and recognition memory of tones and 
account for the contextual asymmetry principle. In a study by 
Krumhansl (1979, Experiment 1), participants rated, on a scale 
from 1 to 7, the similarity of a tone pair presented after a tonal 
context. The key context was established by a C-major chord, an 
ascending scale, or a descending scale. Table 4 displays the pairs 
of tones used in this experiment. Tone pairs contained a tone of the 
major triad (C, E, or G) plus another diatonic scale tone, a tone of 
the major triad plus a nondiatonic tone, or a nondiatonic tone plus 
another diatonic scale tone. The temporal order of the tones was 
counterbalanced. Similarity ratings reflected the influence of tonal 
hierarchies: Ratings were higher when the pair ended on a tone of 
the major triad (C, E, G) than on another diatonic scale tone (D, F, 
A, B). They were higher when the pair ended on a diatonic scale 
tone (D, F, A, B) rather than on a nondiatonic tone (C~, D~, F~, 
G~, A~). Moreover, participants' responses revealed the impor- 
tance of the temporal order of the two tones. Similarity ratings 
were higher when the first tone in the pair was less stable than the 
second tone compared with the reverse order. The strongest asym- 
metry was observed for pairs containing a nondiatonic tone and a 
major triad tone: The similarity ratings were 11.13% higher when 
the second tone belonged to the major triad. A smaller asymmetry 
was found for pairs made of nondiatonic and diatonic tones: 
Ratings increased 10.79% when the pair ended on a diatonic tone. 
The smallest asymmetry was found for pairs made of major triad 
tones and diatonic tones: Similarity ratings were 7.48% higher 
when the second tone belonged to the major triad. 

Simulation 

In the simulations, each of the key contexts used in Krumhansl's 
experiment was presented to the network followed by the first tone 

of the experimental pairs. The phasic activation received by the 
tone unit representing the second tone of the pair was read off. 
Results were averaged over the three contexts (C-major chord, 
ascending scale, descen~ng scale). As shown in Table 4, the 
activation at the second tone of the pair decreased as its stability in 
the key context decreased. Moreover, the activation of the tone 
layer reproduced asymmetries in similarity judgments. The stron- 
gest asymmetry appeared for pairs consisting of a major triad tone 
and a nondiatonic tone: The increase in activation was 13.9% 
higher when the second tone of the pair was a major triad tone than 
when it was nondiatonic. The asymmetry was smaller for 
nondiatonic-diatonic pairs of tones: The increase in activation 
was 8.73% higher when the second tone of the pair was diatonic 
than when it was nondiatonic. The smallest asymmetry was ob- 
served for pairs consisting of a major triad tone and a diatonic 
tone: The activation of a triad tone unit after hearing a diatonic 
tone was 5.3% higher than was the activation of a diatonic tone 
unit after hearing a major triad tone. 

Memory for Melodies 

The aspects of the perception of and memory for tones consid- 
ered previously greatly underdetermine the perception of melodies, 
which involves many factors. Beyond the tonal hierarchy, melodic 
contour (the up and down movement of pitches in a melody) is a 
crucial feature for melody recognition. Although the model does 
not at present include pitch height or contour, the purpose of this 
last simulation was to investigate the extent to which the network 
may account for results obtained in experiments involving melo- 
dies, such as those reported by Dowling (1978). 

Human Performance 

In Dowling's (1978) experiment, participants made same- 
different judgments for pairs of melodies (a standard melody 
followed by a comparison melody). In the "same" comparison 
condition (referred to as the "exact transposition" condition), the 
comparison melody was played in a different key from the stan- 
dard melody but preserved the interval sizes and the melodic 
contour of the standard. The comparison melody was thus an exact 
transposition of the standard. Three "different" comparison con- 
ditions were distinguished. In the first different condition (the 
"tonal answer" condition), the comparison melody was shifted to 
the sixth scale degree of the standard. As a consequence, the 
comparison melody shared the same melodic contour but differed 

Table 4 
Asymmetries of Similarity Data and Activation Data 

First tone Second tone Similarity Difference Activation Difference 

Nondiatonic Major triad 3.675 8.76 
Major triad Nondiatonic 3.308 .368 7.72 1.0 
Nondiatonic Other scale 3.717 8.47 
Other scale Nondiatonic 3.355 .362 7.79 .68 
Other scale Major triad 4.871 9.24 
Major triad Other scale 4.532 .339 8.75 .49 

Note. Major triad = tones C, E, G; other scale = tones D, F, A, B; and nondiatonic = tones C~, DII, FII, Gt~, 
A~. All activation values were multiplied by 103. Similarity data are from "The Psychological Representation 
of Pitch in a Tonal Context," by C. L. Krumhansl, 1979, Cognitive Psychology, 11, p. 346, Table 3. Copyright 
1979 by Academic Press. Adapted with permission. 
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from the standard melody by one interval. In the second "different" 
condition (the "atonal contour foil" condition), the comparison 
melody shared the same contour as the standard but was made of 
randomly selected intervals. In the third "different" condition (the 
"random foil" condition), the comparison melody differed from the 
standard in both melodic contour and diatonic scale intervals. 
Listeners' performance in each of the "different" conditions was 
compared with that of the "exact transposition" condition. An 
analysis of area under the memory operating characteristic curve 
(MOC) showed that participants performed at chance in the "tonal 
answer" condition (the areas under the MOC curve were .48 and 
.49 for experienced and inexperienced listeners, respectively). 
Recognition performance increased for atonal contour foils (areas 
under MOC curve were .79 and .59 for experienced and inexpe- 
rienced listeners, respectively). The highest performance was 
found for random foils (areas under MOC curve were .84 and .83 
for experienced and inexperienced listeners, respectively). Results 
suggest that both the musical scale and the melodic contour gov- 
erned same-different judgments for melodies. 

Simulation 

The simulations were run with pairs of melodies (Dowling, 
1978, Figure 3) consisting of the standard melody followed by one 
of the four experimental conditions: "exact transposition," "tonal 
answer," "atonal contour foil," and "random foil." The network 
was presented with the standard melody immediately followed by 
the comparison.~l To compare human and network performance, 
the phasic activation received by the tone layer in the exact 
transposition condition (following the presentation of the standard 
and its exact transposition) was correlated with the phasic activa- 
tion received by the tone layer in each of the three "different" 
conditions. High correlation values would indicate that the "dif- 
ferent" condition did not substantially affect the state of the tone 
layer in comparison to the exact transposition condition. The 
correlation values thus reflect the capacity of the network to 
differentiate the "exact transposition" condition from each of the 
"different" conditions. These correlation values should thus be 
inversely related to the participants' performance. A high correla- 
tion, r(10) = .99, was found between exact transpositions and 
tonal answers, suggesting that the network barely differentiated 
between the comparison melodies in these conditions. The corre- 
lation decreased for exact transpositions and atonal contour foils, 
r(10) = .27. The lowest correlation was found for exact transpo- 
sitions and random contour, r(10) = .16. Network performance 
thus mirrored human performance: The distinction between the 
standard and the comparison melodies failed when the key and the 
melodic contour of the standard were preserved. Differentiation 
increased when the comparison shared the same contour as the 
standard but was made of randomly selected intervals regardless of 
the tonal scale. Differentiation was easiest when the comparison 
melody had a different melodic contour and different diatonic 
scale intervals than the standard. The neural net simulation ac- 
counts for the tonality effects in this memory experiment. Its 
outcome suggests that the melodic contour effects observed in 
participants' performance may have had some tonal implications 
that are being picked up by the network. 

GENERAL DISCUSSION 

This study investigated the implicit learning of a highly struc- 
tured system (the Western tonal music) to which we are frequently 
exposed in our natural environment. In this system, tones cluster in 
characteristic ways to form chords, and both tones and chords 
cluster over longer temporal windows to form keys. Tones and 
chords have no external meaning (as do words), but they have 
structural functions. Among the factors that determine the struc- 
tural function of a tone or a chord is its tonal stability. Structural 
function is context dependent. For instance, the C tone is a stable 
tonic in a C-major context, a less stable dominant and mediant in 
F- and A b-major key contexts, respectively, a moderately unstable 
leading tone in a Db-major key context, and a very unstable 
nondiatonic tone in an F~ key context. Similarly, the functions of 
all tones of the chromatic scale and of all 24 major and minor 
chords change in the different key contexts. Keys are the largest 
building blocks of the Western tonal system. They are related in 
specifically defined ways. Each of the 24 keys has close relation- 
ships with four other keys. For example, the C-major key is very 
close to the G- and F-major keys (cycle of fifths relationship), to 
the a-minor key (relative major-minor relationship), and to the 
c-minor key (parallel major-minor relationship). In sum, Western 
tonal music rests on a sophisticated network of functional relation- 
ships among tones, chords, and keys. 

Given this apparent complexity, it is frequently asserted that 
perceiving Western musical structures requires extensive explicit 
learning of music theory (see Levinson, 1997, for a debate). 
However, the experimental data show strikingly that explicit learn- 
ing is unnecessary to exhibit a sensitivity to subtle musical struc- 
tures (see, e.g., Bharucha & Stoeckig, 1986; Bigand, 1997; Cuddy 
& Thompson, 1992a; Htbert, Peretz, & Gagnon, 1995). This 
suggests that mere exposure to Western musical pieces suffices to 
develop implicit but sophisticated knowledge of Western harmony. 
Implicit learning, which Franc~s (1958) referred to as a "tonal 
acculturation process," is thought to be developed like "un syst~me 
d'habitudes perceptives.., sans que les termes objectifs dont dt- 
pend leur acquisition soient consciemment pos4s par les sujets" [a 
system of perceptual habi ts . . ,  without a conscious acquisition by 
the participants] (p. 108). 

Tonal acculturation illustrates in the music domain the power of 
the implicit learning process investigated by Reber (1967, 1989), a 
process that has received increasing attention during the last de- 
cade (e.g., Altmann et al., 1995; Cleeremans, 1993; Saffran et al., 
1997). According to Reber (1967), implicit learning is a funda- 
mental characteristic of the cognitive system, enabling the acqui- 
sition of highly complex information without awareness. It has 
been investigated in the laboratory with artificial material that 
conforms to regularities defined by finite state grammars, for 
example. Western tonal music contains a highly sophisticated 
system of regularities (i.e., regularities of co-occurrence, fre- 
quency of occurrence, and psychoacoustic regularities). Of course, 
musical systems are much more complex than artificial finite-state 
grammars. However, the number of opportunities to listen to 
musical pieces obeying this system of relationships is so great in 

11 To account for the longer duration of the last note in Dowling's 
melodies (half note), the input vector of this tone was multiplied by a factor 
of 2. 
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everyday life that it is plausibly learned by the same process. In 
this way, the tonal acculturation process may be viewed as an 
ecological validation of implicit learning (Bigand et al., 1998). 

The general interest of the present connectionist model is to 
provide a formal account of Western music knowledge represen- 
tation that is based on a plausible learning process. In the simula- 
tions reported here, the Western tonal system is taken as one 
specific example of the learning of complex systems in general. A 
musical system contains both general constraints as suggested by 
commonalties between music of different cultures and specific 
constraints that vary across cultures. The most obvious common- 
alities between music of different cultures are the presence of a 
finite number of sound units and the presence of octave equiva- 
lence (see Dowling & Harwood, 1986). In our c0nnectionist 
framework, these two general constraints are expressed by the 
presence of a finite number of input units that represent pitch 
chroma. The specific constraints that vary across cultures pertain 
to the way in which these discrete units are combined simulta- 
neously or sequentially. These are the constraints that are learned 
by the model described previously. 

The learning constraints given to the model are general. They 
are grounded in fundamental processes in neurophysiology: 
frequency-tuned units in auditory cortex, a layered architecture, 
plasticity in auditory cortex, and hebbian learning (Hebb, 1949). 
With the added constraint that hebbian learning is restricted to the 
most active output and its neighbors, self-organization is obliga- 
tory and automatic. The musical environment impresses on the 
brain the correlational structure of music, and this internalized 
structure then serves to filter and facilitate subsequent music 
perception. With the help of these constraints, the model adapts to 
the specific rules of Western harmony through mere exposure to 
typical musical exemplars. As the learning rules are general, the 
model would also work with different kinds of musical systems as 
well as with other systems based on events that have correlational 
structures. 

The implicit learning of the Western tonal system was simulated 
by an unsupervised learning algorithm. At the outset, the model 
did not incorporate knowledge of the tonal system (e.g., weights of 
the connections were set to random values). The structure of the 
system adapted to the regularities of harmonic relationships 
through repeated exposure to tonal material. The connectionist 
algorithm changes connections to allow units to become specific 
detectors of combinations of musical tones over brief temporal 
windows. The entire learning process is guided by bottom-up 
information only, and there is no external teacher. Furthermore, 
there are no explicit rules or concepts stored in the model. The 
learned connections encode collectively how the events appear 
together in music. By mere exposure, these regularities are ex- 
tracted and represented in the pattern of connections between the 
three layers. The first connection matrix reflects which pitch (or 
virtual pitch in the case of the rich input coding simulations RIC- 1 
and RIC-2) is part of a chord; the second matrix reflects which 
chord is part of a key. The overall pattern of connections reflects 
how tones, chords, and keys are interrelated in Western music. Just 
as for nonmusician listeners, the knowledge is acquired without 
explicit instruction or control. It may be argued that layer-by-layer 
training is an oversimplification of the learning process. However, 
preliminary simulations with SIC-1 suggested that simultaneous 

training of the two layers leads to the same network structure, 
although the training takes longer. 

An interesting feature of the model is its ability to account for 
Western music knowledge with a low-dimensional and parsimo- 
nious representation. Low dimensionality is important for a cog- 
nitive model of knowledge representation. The internal represen- 
tation should capture similarities and redundancies in the 
environment with as few dimensions as possible. Projections of 
high-dimensional input onto lower dimensional representations 
have been proposed in models of visual perception (S. Edelman & 
Intrator, 1997) and have been found in brain structures for different 
types of sensory stimuli (Kaas, 1995). Techniques to model di- 
mensionality reduction include principal-components analysis, 
multidimensional scaling, and SOMs. Besides the derivation of a 
low-dimensional representation from an initially high-dimensional 
perceptual space, the Kohonen map creates topographic represen- 
tations reflecting similarities between objects with distances on the 
map. Furthermore, after learning, the map can be used to simulate 
classifications and representations of new objects or object com- 
binations. In our model, lower dimensions are extracted from the 
input space (the chords and the specific combinations of chords in 
time) without supervision, creating topological representations on 
two hierarchical levels (the chord level and the key level). For 
example, a 12-dimensional vector codes the pitch combinations for 
one chord. The 24 vectors coding the pitch combinations for minor 
and major chords are projected on a topologically ordered two- 
dimensional map. 

A major problem for a model of musical knowledge is to 
provide a parsimonious account of the contextual dependency of 
musical functions. Some geometrical models represent musical 
events (tones or chords) in a multidimensional space separately in 
each parent key (e.g., Longuet-Higgins, 1978; Shepard, 1982). For 
instance, a C-major chord would be represented at least four times 
to account for its different functions in the C-, G-, F-major and 
a-minor key contexts. Because each chord and tone might occur in 
different key contexts, representing all potential functions of 
chords and tones in the same model results in considerable redun- 
dancy. In the present model, the learned structure of the tonal 
representation is quite simple: The tones are linked to the chords 
that are linked to the keys, reflecting their statistical properties. 
The different contextual functions of a musical event emerge from 
the patterns of activation spreading through this simple architec- 
ture. In addition to its nonredundant representation, the interactive 
activation patterns also account for the three basic contextual 
principles shown by Krumhansl (1990). For example, contextual 
asymmetry is captured in the following way: In a given musical 
context (e.g., C-major key context), a stable event (e.g., a C-major 
chord) sends weaker activation toward an unstable one (e.g., an 
F~-major chord) than the reverse. Musical cognitive reference 
points are thus not stored explicitly in the model. They are emer- 
gent properties of activation spreading through the network. 

A further emergent property relates to the identification of the 
key in a given context. Several key finding algorithms have been 
proposed in the literature to address this issue (e.g., Huron & 
Parncutt, 1993; Krnmhansl & Schmuclder, cited in Krumhansl, 
1990; Vos & Van Geenen, 1996). Our model takes an alternative 
approach. In the key layer, the most activated key unit represents 
the underlying key induced in listeners at any given point in a 
musical piece. The underlying key is not computed separately but 
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emerges from the activation pattern. Activation propagated toward 
the key units may be caused by tone sequences (melody) or chords 
(harmony) or both. The simulations provide evidence that the 
model is not entirely dependent on the presence of the tonic in the 
stimuli to detect the underlying key. For example, an F-major 
chord (the subdominant chord in a C-major context) followed by a 
G-major chord (the dominant chord in a C-major context) leads to 
the C-major key unit being the most strongly activated, even if the 
C-major chord has not been played yet. As activation accumulates 
in the network, the model also tracks the development of the 
underlying key during the ongoing sequence. The activation pat- 
tern of the most activated key units reflects the dynamic process of 
tonality sensation that constantly evolves over time. Consequently, 
the model does not need to encounter the problem of delineating 
appropriate segments for an analysis (see Shmulevich & Yli-Harja, 
1999, for a discussion). In addition, the model generates predic- 
tions for the most probable key to occur next during a piece. 

The model also provides a parsimonious account of musical 
tension-relaxation and expectancy. The organization of tension- 
relaxation relationships in Western music (see Lerdahl & Jacken- 
doff, 1983), and its link to expectation (Lerdahl, 1996), has re- 
ceived some attention but most writings of music aesthetics have 
focused on expectation. According to Meyer (1956, 1973), musical 
expressivity derives from the way musical expectation may or not 
be resolved in the course of the piece. The present connectionist 
framework establishes how musical tension-relaxation and musi- 
cal expectancy may derive from abstract knowledge of Western 
harmony. The simulations account for the influence of a short 
context (one chord) on the development of harmonic expectancy 
(cf. Bharucha & Stoeckig, 1987) as well as for the growth of 
expectancy during a longer musical sequence (cf. Bigand et al., 
1999). They also provide a possible account of the mutual influ- 
ence of global and local harmonic relationships on harmonic 
expectancy (Bigand et al., 1999; Tillmann, Bigand, & Pineau, 
1998), and of the influence of the temporal order of chords within 
a chord sequence (Tillmann & Bigand, 1999). A more critical 
feature of the model is its ability to account for the time course of 
bottom-up and top-down processes during expectancy formation. 
Western musical structure reflects the influences of both acoustic 
properties of tones and cultural tradition in combining pitches in 
specific ways. The respective influences of sensory and knowledge 
driven processes thus have been a matter of debate in music 
psychology (Krumhansl, 1990; Parncutt, 1988), and both play 
roles in the processing of musical signals (Bigand et al., 1996). The 
question remains to determine when each influence is the most 
active (see Regnault et al., in press). 

The present model sheds light on the time course of both 
processes. The first cycles of reverberation reflect bottom-up in- 
fluences, and only units sharing actual sounded events are acti- 
vated. After several cycles, activation spreads through the network, 
and the top-down influences of higher representation levels be- 
come apparent. The key layer influences the chord layer that in 
turn impresses on the tone layer. The lower levels send activation 
back to the higher levels, and the process continues until an 
equilibrium is reached, at which point activation patterns reflect 
tonal and harmonic relations in the actual tonal context. In some 
cases, the difference between bottom-up and top-down influences 
simulated by the model may be sources of potential empirical 

falsification. Thus far, human data fit nicely with the model 
(Tekman & Bharucha, 1998). 

In sum, by simulating context effects and taking into account a 
range of experimental data, the model provides a formal and 
parsimonious way of unifying music theoretic and psychological 
constructs with the help of a common mechanism, namely spread- 
ing activation (cf. in language, e.g., Dell, 1986; McClelland & 
Elman, 1986; McClelland & Rumelhart, 1981). 

The present model also offers a framework for generating new 
testable predictions that relate to important issues in music per- 
ception. A first prediction pertains to the loci of key identification 
in long harmonic contexts. This issue is a matter of debate for both 
music and cognitive theories (Brown, 1988; Butler, 1989; A. J. 
Cohen, 1991; Thompson & Cuddy, 1989; Vos & Van Geenen, 
1996). The model enables us to investigate this question in a way 
that may not be anticipated by those theories. For example, de- 
grading the harmonic context is likely to affect the identification of 
the key, just as degrading a visual stimulus affects its identification 
(e.g., Abdi, Valentin, Edelman, & O'Toole, 1995; B. Edelman, 
Valentin, & Abdi, 1998, for faces; Biederman, 1987; Biederman & 
Cooper, 1991, for objects). If tonally important notes are elimi- 
nated from the sequences, the difference in processing of the target 
would diminish or vanish. Simulations will permit us to determine 
which tones of the context are responsible for establishing the 
tonality and for creating the observed difference in activation of 
the target. 

Two further predictions are linked m the model's simulation of 
dynamic aspects of harmonic processing such as the influence of a 
previous key on the processing of events occurring later in the 
piece. Theories of tonal music cognition make the strong assump- 
tion that listeners keep the first main key in memory throughout 
the entire piece, even if the piece modulates to another key (Cook, 
1987, 1990; Lerdahl & Jackendoff, 1983; Marvin & Brinkman, 
1999; Meyer, 1956, 1973; Schenker, 1935/1979). Accordingly, the 
processing of an event should be influenced by the first instilled 
main key and the local key. It seems likely that the memory trace 
of the main key depends both on the harmonic relationships 
between main key and intervening local key and on the time 
elapsed since the first key. Bigand and Parncutt (1999), reported 
that listeners tend to lose the feeling of the main key rapidly after 
a distant modulation has occurred. The authors suggested that the 
short-term memory span "might increase when musical sequences 
modulate smoothly to closely related keys" (p. 252). The connec- 
tionist model addresses this suggestion by predicting the strength 
of the main key as a function of both harmonic distance and 
elapsed time. In the model, activations of both main key and 
intervening key are accumulated and are weighted by a decay that 
increases with elapsed time. A preliminary study along these lines 
was conducted by Bigand et al. (1999, Experiment 3). 

In a related vein, the model predicts the effect of an interfering 
unrelated event (such as an erroneous note) on the processing of 
later events. Every musician would agree that such an unrelated 
event would more or less disturb the listening process, but neither 
music nor cognitive theories formalize the strength of this disrup- 
tion. The connectionist model predicts that the interference caused 
by an unrelated event is a function of its harmonic incongruity, the 
time elapsed since its occurrence, and the tempo of the sequence 
(see Tillmann, Bigand, & Pineau, 1998, for a preliminary empir- 
ical investigation of this issue). In the three examples, the connec- 
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tionist model proposes a formal account making precise predic- 
tions about aspects of music perception that are important from 
both cognitive and music theoretical perspectives. 

The present study has focused on how Western regularities in 
the pitch dimension may be internalized through passive learning 
processes. Although pitch is the most obvious form-bearing di- 
mension of Western tonal music, regularities in other musical 
dimensions might also contribute to listeners' perceptual experi- 
ence and may be internalized through similar processes. Beyond 
pitch, time is a crucial form-bearing dimension in music. Temporal 
regularities include the organization of event-onset intervals 
through time leading to a sensation of meter, a sensation of a 
regular succession of strong and weak beats superimposed over an 
isochronous pulse. Temporal regularities also include the temporal 
patterns of onset intervals creating rhythms that are perceived 
against a metrical background. To date, psychological accounts of 
music perception have typically treated pitch and temporal struc- 
tures separately. Models of pitch have been proposed without 
regard to the potential influence of meter or rhythm (Deutsch & 
Feroe, 1981; Lerdahl, 1988; Longuet-Higgins, 1978; Krumhansl, 
1990; Shepard, 1982) and vice versa (Fraisse, 1974; Longuet- 
Higgins & Lee, 1984; Povel, 1981). A growing number of re- 
searchers have nevertheless attempted to investigate the mutual 
contribution of pitch and time from both an empirical and theo- 
retical perspective (e.g., Jones, 1976; Jones & Boltz, 1989; Lerdahl 
& Jackendoff, 1983). Temporal regularities have been shown to 
influence the perception of musical events in many ways, includ- 
ing performance in recognition tasks (Bigand & Pineau, 1996; 
Boltz, 1993), recall (Boltz, 1991), completion judgments (Boltz, 
1989a, 1989b; Laden, 1994; Palmer & Kmmhansl, 1987a, 1987b), 
evaluations of musical tension (Bigand, 1993, 1997), and musical 
expectations. For instance, a listener familiar with Western tonal- 
metric music will develop expectations about the "what" and the 
"when" of the events (Jones & Boltz, 1989), resulting in greater 
facilitation for expected events that occur at the expected time 
(Bigand et al., 1999, Experiment 3; Schmuckler & Boltz, 1994). 

From this standpoint, the present model gives an incomplete 
account of music perception because it focuses on pitch regulari- 
ties. The model is not atemporal but rather quasitemporal. Pitch 
information is integrated over time, as governed by the temporal 
persistence of activation. Persistence is controlled by the decay 
rate of a neural unit, thereby determining the temporal window 
(Bharucha, 1999). The model is, therefore, sensitive to some 
sequential information, encoding duration by exponential decay. 
Furthermore, activation is phasic, making the model sensitive to 
event onsets, which are the defining moments in meter and rhythm. 
The model thus goes further in incorporating time than do most 
models of musical pitch, which are atemporal. Nevertheless, meter 
and rhythm are missing, requiring further developments of the 
model. We have proceeded as we have in this article on the 
grounds that, although pitch and time may interact, we know of no 
findings pointing to interactions wherein temporal structure 
changes qualitatively the hierarchies of tonality established by 
pitch structures. 

The question of how pitch and time work in combination arises 
not only for perception and memorization but also for the implicit 
learning of regularities underlying environmental events. In the 
research domain of implicit learning, few studies have analyzed 
learning processes with stimuli that vary on two simultaneous 

dimensions. Mayr (1996) studied the learning of experimental 
stimuli that vary independently on two dimensions: spatial regu- 
larities (object location) and nonspatial regularities (object type). 
The results reveal that two independent and relatively complex 
sequences can be learned. The author concluded that learning is 
not a unitary process but that several at least partially independent 
systems are included in the learning of spatial and nonspatial 
regularities. In light of this result, the question arises as to what 
type of processes mediate the learning of material like music that 
follows regularities displayed on several more or less independent 
dimensions such as time and pitch: Do listeners learn the regular- 
ities developed on the two dimensions independently or in an 
integrated manner? In conclusion, we would like to suggest some 
avenues for investigating this issue in the music domain through 
neural net computing. 

Two frameworks have been distinguished to account for the 
respective contributions of temporal and nontemporal regularities 
in the perception of musical events (Peretz & Kolinsky, 1993). On 
the one hand, Jones and Boltz (1989) presented a single- 
component model in which the temporal accents and the harmonic 
accents are integrated in "a joint accent structure" that guides the 
attention of the listener during the ongoing musical piece. The 
tonal and temporal structures are not processed independently, and 
the processing of one dimension interferes with the processing of 
the other dimension. As a consequence, the modification of one 
dimension influences irrepressibly the processing on the other 
dimension (Bigand, 1997; Bigand & Pineau, 1996; Boltz, 1991, 
1993). On the other hand, Peretz and Kolinsky (1993) described 
some independence between the processing of temporal and non- 
temporal information, both types of information being integrated at 
a later stage. Empirical support for a two-component model comes 
from neuropsychological data (with the documentation of a double 
dissociation, that is amelodia without arrhythmia and vice versa), 
and a large body of experimental findings (Pahner & Krumhansl, 
1987a, 1987b; Peretz, 1990; Peretz & Kolinsky, 1993; Peretz & 
Morais, 1989). 

Two types of neural net architecture may be potentially distin- 
guished to account for the learning of Western musical structures 
that would mimic these two theoretical models. Following a 
single-component model (i.e., an interactive-integration model), a 
neural net should learn the two regularities conjointly without a 
supplementary integrative step. A possible solution consists of 
adapting the input codings proposed by Berger and Gang (1997, 
1998) or by Stevens and Wiles (1994). In the work of Berger and 
Gang (1997, 1998), the input units of a sequential net are tuned to 
the 12 tones of the chromatic scale, and seven supplementary units 
code the metrical position of a chord. For example, three units 
code a meter with three beats and four units code a meter with four 
beats. When a chord is presented to the network, one of these 
"metrical" units is activated (e.g., the first unit is activated when 
the event arrives on the first beat of a triple meter). Stevens and 
Wiles (1994) added to the input layer units that code either the 
duration of an event or its metrical accent (strong, weak). Although 
these types of coding are relatively abstract, they mimic the con- 
joint learning of the two dimensions. Following a two-component 
model (independent processes followed by integration), the learn- 
ing of temporal and nontemporal regularities would be separated 
during the training session. The SOM model described previously 
might learn the Western pitch regularities independently of another 
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network model designed to extract temporal regularities from 
rhythmic patterns, as does the model proposed by Large and Kolen 
(1994). Following Large and Kolen (1994), the output of the 
temporal model may be interpreted as cycles of attention or pulses 
of attention. The two models would learn separately the harmonic 
information and the temporal information. Their respective output 
would then be integrated to model the development of expectation; 
for example, the oscillatory cycles might reinforce or weaken the 
activation of events in the harmonic model. The presently dis- 
cussed extension of the integration of the temporal dimension 
might provide additional insight into learning processes and per- 
ception of the two dimensions in music. 
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