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Introduction 
 
Analogy-making is crucial for human cognition. Many cognitive processes involve analogy-
making in one way or another: perceiving a stone as a human face, solving a problem in a way 
similar to another problem previously solved, arguing in court for a case based on its common 
structure with another case, understanding metaphors, communicating emotions, learning, 
translating poetry from one language to another (Gentner, Holyoak, & Kokinov, 2001). All these 
cases require an abstract mapping to be established between two cases or domains based on their 
common structure (common systems of relations). This may require re-representation of one (or 
both) of the domains in terms of the other one (or in terms of a third domain). The first domain is 
called the base (or source), and the second is referred to as the target. 
 
Analogy-making is a very basic cognitive ability which appears to be present in humans from a 
very early age and develops over time. It starts with the simple ability of babies to imitate adults 
and to recognize when adults are imitating them, progresses to children’s being able to recognize 
an analogy between a picture and the corresponding real object, and, ultimately, culminates in 
the adult ability to make complex analogies between various situations. This seems to suggest 
that analogy-making serves as the basis for numerous other kinds of human thinking and 
explains the importance of developing computational models of analogy-making.  
 
Analogy-making involves at least the following sub-processes: representation-building, retrieval 
of a “base” for the analogy, mapping this base onto the “target,” transferring of unmapped 



elements from the base to the target, thereby making inferences, evaluating the validity and 
applicability of these inferences, and learning from the experience, which includes generalizing 
from specific cases and, possibly, developing general mental schemas. There are, at present, no 
models that incorporate all these sub-processes, although individual models focus on one or, in 
some cases, several of these sub-processes. 
 
Representation-building.  This process is absent in most models of analogy-making. Typically 
hand-made representations are fed into the model. However, there are some models 
(ANALOGY, CopyCat, TableTop, MetaCat) that do produce their own high-level 
representations based on essentially unprocessed input. These latter models (Mitchell, 1993; 
Hofstadter, 1995; French, 1995) attempt to build flexible, context-sensitive representations 
during the course of the mapping phase. Other models, such as AMBR (Kokinov & Petrov, 
2001), perform re-representation of old episodes. 
 
Retrieval. This has been extensively studied experimentally and it is now clear that superficial 
similarity plays the major role in analogical retrieval, i.e. the retrieval of a base for analogy is 
easier if it shares similar objects, similar properties, similar general theme with the target. 
Structural similarity, the familiarity of the domain from which the analogy is drawn, the richness 
of its representations and the presence of generalized schemas also facilitate retrieval. Most 
models of retrieval are based on exhaustive search of LTM and on the assumption that old 
episodes have context-independent, encapsulated representations. There are, however, 
exceptions (e.g. AMBR) that rely on context-sensitive reconstruction of old episodes performed 
in interaction with the mapping process. 
 
Mapping. This is unquestionably the core of analogy-making and, therefore, all computer 
models of analogy-making include mapping mechanisms, i.e., means of discovering which 
elements of the base correspond to which elements of the target.  The difficulty is that one 
situation can be mapped onto a second situation in many different ways.  We might, for example, 
make a mapping based on the color of the objects in both the base and target (the red-shirted 
individual in the base domain would be mapped to the red-shirted person in the target domain).  
This would, in general, be a very superficial mapping (but might, nonetheless, be appropriate on 
occasion).  We could also map the objects in the two domains based on the relational structure.  
For example, we could decide that it was important to preserve the giver-receiver relationship in 
the first domain with the same relationship in the target domain, ignoring the fact that in the base 
domain the giver had a red shirt and in the target domain the receiver was wearing a red shirt. 
 Experimental work has demonstrated that finding this type of structural isomorphism 
between base and target domains is crucial for mapping (Gentner, 1983). Object similarity also 
plays a role in mapping, although generally a secondary one. A third factor is the pragmatic 
importance of various elements in the target – people try to find mappings that involve the most 
important elements in the target. Searching for the appropriate correspondences between the base 
and target is a computationally complex task that can lead to combinatorial explosion if the 
search is unconstrained. 
 
Transfer.  This is the process of inserting new knowledge into the target domain based on the 
mapping.  For example, assume a new type of car appears on the market and it turns out that this 
car maps well onto another type of car that is small, fast, and handles well on tight curves.  But 



you also know that this latter type of car is frequently in need of repair.  Transfer is when you 
wonder whether the analogous new model of car will also be in the garage often for repairs. 
 Transfer is present in one form or another in most models of analogy-making and is 
typically integrated with mapping. Transfer is considered by some authors as an extension of the 
mapping already established, thus adding new elements to the target in such a way that the 
mapping can be extended.  
 
Evaluation. This is the process of establishing the likelihood that the transferred knowledge will 
turn out to be applicable to the target domain. In the example above, the evaluation process 
would have to assign the degree of confidence we would have that the new car would also 
frequently be in need of repair. Evaluation is often implicit in the mechanisms of mapping and 
transfer. 
 
Learning. Only a few models of analogy-making have incorporated learning mechanisms, which 
is somewhat surprising since analogy-making is clearly a driving force behind much learning. 
However, some models are capable of generalization across the base and target, or across 
multiple exemplars, to form an abstract schema, as in LISA (Hummel & Holyoak, 1997) and the 
SEQL model based on SME (Falkenhainer, Forbus & Gentner, 1989).  
 
In what follows we review a number of important computational models of analogy-making. An 
attempt is made to present models belonging to different classes and following different 
approaches. First the “symbolic” models will be presented. These models employ separate local 
representations of objects, relations, propositions, episodes (“John”, “chair”, “run”, “greater-
than”, “John ate fish”, “My birthday party last year”, etc.).Then the so-called “connectionist” 
models are presented. Here the objects, relations, and episodes are represented as overlapping 
patterns of activation in a neural network. Finally, a third class of models are presented which 
are of hybrid type – they combine symbolic representations with connectionist activations. They 
are based on the idea that cognition is an emergent property of the collective behavior of many 
simple agents. 
 
 
Classical Symbolic Models 
 
ANALOGY 
 
The earliest computational model of analogy-making, ANALOGY, was developed by Thomas 
Evans (1964). This program solves geometric-analogy problems of the form A:B::C:? taken from 
IQ tests and college entrance exams. 
 An important feature of this program is that the input is not a hand-coded, high-level 
description of the problem, but, rather, a low-level description of each component of the figure – 
dots, simple closed curves or polygons, and sets of closed curves or polygons. The program 
builds its own high-level representation describing the figures in A, B, C, and all given 
alternatives for the answer, with their properties and relationships (e.g.  ((P1 P2 P3) . ((INSIDE 
P1 P2) (LEFT P1 P3) (LEFT P2 P3))). Then the program represents the relationship between A 
and B as a set of possible rules describing how figure A is transformed into figure B, e.g. 
((MATCH P2 P4) (MATCH P1 P5) (REMOVE P3)) which means that the figure P2 from A 



corresponds to figure P4 from B, P1 to P5, and the figure P3 does not have a correspondent 
figure and is therefore deleted. Then each such rule is applied to C in order to get one of the 
alternative answers. In fact, each such rule would be generalized in such a way to allow C to be 
applied to D. Finally, the most specific successful rule would be selected as an outcome. 
Arguably, one of the most significant aspects of the program is its ability to represent the target 
problem on its own — a feature that has unfortunately been dropped in most recent models. 
 
 
Structure-Mapping Theory 
 
Without question, the most influential family of computational models of analogy-making have 
been those based on Dedre Gentner’s (1983) Structure Mapping Theory (SMT). This theory was 
the first to explicitly emphasize the importance of structural similarity between base and target 
domains, defined by common systems of relations between objects in the respective domains. 
Numerous psychological experiments have confirmed the crucial role of relational mappings in 
producing sound and convincing analogies. There are several important assumptions underlying 
the computational implementation of SMT called SME (Falkenhainer, Forbus & Gentner, 1989): 
1) mapping is largely isolated from other analogy-making sub-processes (such as representation, 
retrieval and evaluation) and is based on independent mechanisms; 2) relational matches are 
preferred over property matches; 3) only identical relations in both domains can be put into 
correspondence; 4) relations that are arguments of higher-order relations that can also be mapped 
have priority since they implement the “systematicity principle” that favors systems of relations 
over isolated relations; and 5) construction of two or three interpretations by a ‘greedy merge’ 
algorithm that generally finds the ‘best’ structurally coherent mapping. Early versions of SME 
mapped only identical relations and relied solely on relational structure. This purely structural 
approach  was intended to ensure the domain-universal nature of the mapping process. Recent 
versions of SME have explored some limited use of pragmatic aspects of the situation, as well as 
re-representation techniques that allow initially non-matching predicates to match. 
 The MAC/FAC model (Forbus, Gentner, & Law, 1995) of analogical retrieval was 
developed to be coupled with SME. This model assumes that episodes are encapsulated 
representations of past events which have a dual encoding in LTM: a detailed predicate-calculus 
representation of all the properties and relations of the objects in an episode and a shorter 
summary (a vector representation indicating the relative frequency of predicates are used in the 
detailed representation). These representations are used in two sequential stages in the retrieval 
process. The first stage makes use of the vector representations to perform a superficial search 
for episodes that share predicates with the target problem.  The episode vectors in LTM that are 
close to the target vector are then selected for processing by the second stage.  The second stage 
uses the detailed predicate-calculus representations of the episodes to select the one that best 
matches the target. These two stages simulate the dominance of superficial similarity on 
retrieval, but also the fact that retrieval is influenced by the structural similarity. 
 The ideas of Gentner and colleagues, in particular, their emphasis on the structural 
aspects of analogical mappings, have been very influential in the area of analogy-making and 
have been applied to analogy-making in contexts ranging from child development to folk 
physics.  Various improvements and variants of the SME have been developed over time and it 
has been included as a module in various practical applications. 
 



Other Symbolic Models 
 
A number of other symbolic models have played a role in the advance of analogy-making 
understanding. Jaime Carbonell proposed the concept of derivational analogy where the analogy 
is drawn not with the final solution of the old problem, but with its derivation, i.e. an analogy 
with the way of reaching up the solution is made, an approach developed further by Manuela 
Veloso. Smadar Kedar-Cabelli developed a model of purpose directed analogy-making in 
concept learning. Mark Burstein developed a model called CARL that learned from multiple 
analogies combining several bases. Mark Keane and his colleagues developed an incremental 
model of mapping, IAM, which would explain the order effects in presentation of the material. 
These symbolic models, as well as a number of other early symbolic models of analogy-making 
are described in detail in Hall (1989). 
 
Connectionist Models 
 
Research in the field of analogy-making has, until recently, been largely dominated by the 
symbolic approach for an obvious reason:  symbolic models are well equipped to process and 
compare the complex structures required for analogy-making. In addition, in the early years of 
the new connectionist paradigm, these structures were very difficult to represent in a 
connectionist network. However, advances in connectionist representation techniques have 
allowed distributed connectionist models of analogy to be developed. Most importantly, 
distributed representations provide a natural internal measure of similarity, thereby allowing the 
system to handle the problem of similar, but not identical, relations in a relatively 
straightforward manner. This latter ability is crucial to analogy-making and has proved hard for 
symbolic models to implement.  
 
 
Multiple Constraints Theory 
 
The earliest attempt to design an architecture in which analogy-making was an emergent process 
of activation states of neuron-like objects was proposed by Keith Holyoak and Paul Thagard 
(1989) and implemented in a model called ACME.  In this model, structural similarity, semantic 
similarity, and pragmatic importance determine a set of constraints to be simultaneously 
satisfied. The model is supplied with a representation of the target and one of the base and 
proceeds to build a localist constraint-satisfaction connectionist network where each node 
corresponds to a possible pairing hypothesis for each element of the base and each element of the 
target. So, for example, if the base is train and the target is car, then all elements of trains will be 
mapped to all elements of cars. There will therefore be hypothesis nodes created not only for 
“locomotive → motor” but also for “locomotive → license plate,” “locomotive → seat-belt 
buckle,” etc. The excitatory and inhibitory links between these nodes implement the structural 
constraints.  In this way, contradictory hypothesis nodes compete and do not become 
simultaneously active, while consistent ones mutually support each other.  The network 
gradually reaches an equilibrium state and the best set of consistent mapping hypotheses (e.g., 
“locomotive” → “motor”, “rails” → “road”, etc.) wins. The relaxation of the network provides a 
parallel evaluation of all possible mappings and finds the best one, which is represented by the 



set of most active hypothesis nodes. ARCS is a model of retrieval that is coupled with ACME 
and operates in a similar fashion. However, while mapping is dominated by structural similarity, 
retrieval is dominated by semantic similarity. 
 
 
STAR 
 
STAR-1 was the first distributed connectionist model of analogy-making (Halford, et al, 1994). 
It is based on the tensor product connectionist models developed by Smolensky. A proposition 
like MOTHER-OF (CAT, KITTEN) is represented by the tensor product of the three vectors 
corresponding to MOTHER-OF, CAT, and KITTEN:  MOTHER-OF⊗CAT⊗KITTEN. The 
tensor product in this case is a three-dimensional array of numbers where the number in each cell 
is the multiplication of the three corresponding coordinates. This representation allows any of the 
arguments or the relational symbol to be extracted by a generalized dot-product operation: 
MOTHER-OF ⊗ CAT  MOTHER-OF ⊗ CAT ⊗ KITTEN = KITTEN. The LTM of the system 
is represented by a tensor that is the sum of all tensor products representing the individual 
statements (the main restriction being that the propositions are simple and have the same number 
of arguments). Using this type of representation the model STAR-1 solves proportional 
analogies like CAT:KITTEN::MARE:?.  
 STAR-2 (Wilson, et al., 2001) maps complex analogies by sequentially focusing on 
various parts of the domains (simple propositions with no more than 4 dimensions) and finding 
the best map for the arguments of these propositions by parallel processing in the constraint 
satisfaction network (similarly to ACME). Since the number of units required for a tensor-
product representation increases exponentially with the number of arguments of a predicate, this 
implies processing constraints in the model. The authors of the model claim that humans are 
subject to similar processing constraints, specifically, they can, in general, handle a maximum of 
four dimensions of a situation concurrently. The primary interest of the modelers is in exploring 
and explaining capacity limitations of human beings and achieving a better understanding of the 
development of analogy-making capabilities in children. 
 
LISA 
 
John Hummel and Keith Holyoak (1997) proposed an alternative computational model of 
analogy-making using distributed representations of structure relying on dynamic binding. The 
idea is to introduce an explicit time axis so that patterns of activation can oscillate over time 
(thus the timing of activation becomes an additional parameter independent of the level of 
activation). In this way patterns of activation oscillating in synchrony are considered to be bound 
together while those oscillating out of synchrony are not. For example, “John hired Mary” 
requires synchronous oscillation of the patterns for “John” and “Employer” alternating it with 
synchronous oscillation of the patterns for “Mary” and “Employee”. Alternating the activation of 
the two pairs periodically in time makes it possible to represent the whole statement. However, if 
the statement is too complex there will be too many pairs that need to fire in synchrony. Based 
on research on single cell recordings, Hummel and Holyoak believe that the number of such 
different pairs of synchronously firing concepts cannot exceed six. Representations in LISA’s 
Working Memory are distributed over the network of semantic primitives, but are localist in 
Long Term Memory – there are separate units representing the episode, the propositions, their 



subparts, predicates, arguments, and bindings. Retrieval is performed by spreading activation 
while mapping is performed by learning new connections between the most active nodes. LISA 
successfully integrates retrieval of a base with the mapping of the base and target, even though 
retrieval and mapping are still performed sequentially (mapping starts only after one episode is 
retrieved). 
 
Hybrid Models 
 
Two groups of researchers independently produced similar models of analogy-making based on 
the idea that high-level cognition emerges as a result of the continual interaction of relatively 
simple, low-level processing units, capable of doing only local computations. These models are a 
combination of both the symbolic and connectionist approaches. Semantic knowledge is 
incorporated in order to compute the similarity between elements of both domains in a context-
sensitive way. 
 
COPYCAT, TABLETOP, etc. 
 
The family of COPYCAT and TABLETOP architectures (Mitchell, 1993; Hofstadter, 1995; 
French, 1995) was explicitly designed to integrate top-down semantic information with bottom-
up emergent processing. COPYCAT solves letter-string analogies of the form: 
ABC:ABD::KLM:? and gives probabilistically possible answers like KLN, KLD, etc. The 
architecture of COPYCAT involves a working memory, a semantic network (simulating long-
term memory) defining the concepts used in the system and their relationships, and the Coderack 
– the procedural memory of the system – a store for small, nondeterministic computational 
agents (“codelets”) working on the structures in the working memory and continually interacting 
with the semantic network.  Codelets can build new structures or destroy old structures in 
working memory. The system gradually settles towards a set of consistent set of structures that 
will determine the mapping between the base and the target.  
 The most important feature of these models of analogy-making is their ability to build up 
their own representations of the problem, in contrast with most other models which receive the 
representations of the base and target as input. Thus these models abandon traditional sequential 
processing and allow representation-building and mapping to run in parallel and continually 
influence each other. In this way, the partial mapping can have an impact on further 
representation-building, thus allowing the gradual construction by the program of context-
sensitive representations. In this way, the mapping may force us to see a situation from an 
unusual perspective in terms of another situation, this being crucial to creative analogy-making. 
 
 
AMBR 
 
AMBR (Kokinov, 1994) solves problems by analogy, e.g. “how can you heat some water in a 
wooden vessel being in the forest?”. The solution, heating a knife in the fire and immersing it 
into the water, is found by analogy with boiling water in a glass using an immersion heater.  
 The AMBR model is based on DUAL, a general cognitive architecture. The LTM of 
DUAL consist of many micro-agents each of which represents a small piece of knowledge. Thus 
concepts, instances and episodes are represented by (possibly overlapping) coalitions of micro-



agents. Each micro-agent is hybrid – its symbolic part encodes the declarative and/or procedural 
knowledge it is representing, while its connectionist part computes the agent’s activation level 
which represents the relevance of this knowledge to the current context. The symbolic processors 
run at speed proportional to their computed relevance thus making the behavior of the system 
highly context-sensitive. The AMBR model implements the interactive parallel work of 
recollection, mapping and transfer which emerge from the collective behavior of the agents and 
whose work produces the analogy. Recollection in AMBR-2 (Kokinov & Petrov, 2001) is 
reconstruction of the base episode in WM by activating relevant aspects of event information, of 
general knowledge, and of other episodes and forming a coherent representation which will 
correspond to the target problem. The model predicts illusory memories, including insertions 
from general knowledge and blending with other episodes as well as context and priming effects. 
A number of these predictions have been experimentally confirmed. 
 
 
Conclusions 
 
The field of computer-modeling of analogy-making has moved from the early models which 
were intended mainly as existence proofs to demonstrate that computers could, in fact, be 
programmed to do analogy-making to complex models which make nontrivial predictions of 
human behavior. Researchers have come to appreciate the need for structural mapping of the 
base and target domains, for integration of and interaction between representation-building, 
retrieval, mapping and learning, and for building systems that can potentially scale up to the real 
world. Computational models of analogy-making have now been applied to a large number of 
cognitive domains (cf. Gentner, Holyoak, Kokinov, 2001). However, many issues still remain to 
be explored in the endeavor to model analogy-making, a capacity which is, without question, one 
of humans’ most important cognitive abilities. 
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