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Introduction 
 
 Our ability to see a particular object or situation in one context as being “the same as” 
another object or situation in another context is the essence of analogy-making. It 
encompasses our ability to explain new concepts in terms of already-familiar ones, to 
emphasize particular aspects of situations, to generalize, to characterize situations, to explain 
or describe new phenomena, to serve as a basis for how to act in unfamiliar surroundings, to 
understand many types of humor, etc. Within this framework, the importance of analogy-
making in modeling cognition becomes clear.  
 
Principles unde rlying the computational modeling of analogy 
 

Analogy-making, whether human or computational, is typically conceived of as 
involving a mapping between two domains, called the source (or base) and the target. Hall 
(1989) lists four abstract processes that are widely considered to be necessary for analogical 
reasoning — namely, recognition  of a source, given a target description; elaboration  of the 
mapping between the two; evaluation of the mapping and transfer of information from the 
source to the target; and consolidation (i.e., learning) of the outcome. Chalmers, French, & 
Hofstadter (1992) suggested that this basic framework should also include dynamic  
representation-building mechanisms and parallel sub-process interaction.  

The following (true) example anecdotally illustrates not only these processes, but also 
the ubiquity of analogical processing, even in completely ordinary situations: In 1973 I was, 
for the first time ever, in a European bathroom [target]. This obviously brought to mind 
[recognition] an American bathroom [source] because [elaboration and evaluation] the 
European bathroom sink clearly mapped to an American bathroom sink, the European 
bathtub (although having a somewhat different shape) mapped to an American bathtub, the 
European towel-rack to an American towel-rack, the European mirror to an American mirror, 
etc. However, one object in the European bathroom puzzled me. It was made of porcelain, 
had a drain, and could be rinsed out with water from two faucets. I concluded [transfer] that 
this object must be a European “toilet” and acted on my conclusion... (I only later discovered 
what a “bidet” was and realized that European toilets are frequently not in the bathroom.) 
 
Classes of computational models of analogy-making 

Although there are many ways of classifying analogy-making programs, we have chosen 
to classify them into three broad groups based on their underlying architectures. (For another 
classification scheme, see, for example, Spanoudakis & Constantopoulos, 1996) These are:  

• “symbolic” models, so called because they are largely part of the “symbolic” 
paradigm in AI, in which symbols, logic, planning, search, means -ends analysis, etc. 
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play a predominant role. (See Hall, 1989, for an extensive review of these early 
models.) 

• “connectionist” models that adopt, broadly speaking, the framework of the 
connectionist networks, including nodes, weights, spreading activation, etc.  

• hybrid models that lie somewhere in between connectionist and symbolic models.  
 
Symbolic models 
 

The distinction of being the first computer model of analogy-making arguably goes to 
Argus (Reitman, 1965). The program solved proportional analogies that, by today’s 
standards, seem trivial. For example, the program was given: bear:pig::chair:? and had do 
pick an answer from one of four choices: foot, table, coffee, strawberry. While the program 
was simple in the extreme, its architecture nonetheless included many far-sighted principles, 
among them the use of a conceptual network, interactions between the concept network and 
the problem to be solved, the realization of the necessity of automatic representation-building 
for the source and target, etc. 

The best known model from the 1960’s was ANALOGY (Evans, 1968). Like Argus, this 
program was designed to do proportional analogies of the form A:B::C:? taken from 
standardized high-school IQ tests (see Box 1). All of the objects in the analogies were simple 
geometric figures. One important feature of ANALOGY was that its input was a low-level 
description of each figure and, based on this, the program built a high-level description of the 
figure. All of the problems solved by ANALOGY are from the same domain, i.e., both source 
and target consist of geometric figures.  

Also about that time, JCM (Becker, 1969) attempted to put the computational modeling 
of analogy-making into a more cognitively plausible, real-world framework, incorporating 
incipient notions of learning, Working Memory (WM) and a Long-term Memory (LTM) in 
which were stored representations of a set of primitive objects, importance-ranked relations 
between them, events and causal mappings.  

A number of models from this early period drew heavily on formal logic. For example, 
ZORBA-1 (Kling, 1971) was an automated theorem prover that solved (target) problems by 
finding an analogous (source) problem, taking its proof and applying it to the target problem. 
Munyer (1981) and Greiner (1985) also developed analogy-making systems based on formal 
logic. Munyer’s system, in particular, combined planning, problem-solving and de ductive 
logic and implemented a process of gradual “convergence” to a correct mapping via an 
interaction between top-down (logic) and bottom-up, competitive processes.  

The first attempt to apply production systems to computational analogy-making was 
ANA (McDermott, 1979) a program that did problem-solving in a micro-world. This program 
had an LTM knowledge base (stored as production rules) and a working memory. ANA 
progressively built the appropriate productions needed to solve the target task, analogous to a 
source task stored in LTM that it already knows how to do. It learned by saving the new 
productions in LTM.  

Carbonell (1983) applied means -ends analysis to analogical retrieval. One key difference 
with previous work was that his transformational analogy method used weak search methods 
and sub-goaling to find solution paths to a solution to a particular target problem. The 
program had a stored set of second-order representations of solution-paths for previously 
solved problems. Means -ends analysis was then used to discover the source problem that best 
corresponded to the target problem. This transformational analogy method was later extended 
to a more powerful derivational analogy method (Carbonell, 1986; Veloso & Carbonell, 
1990) that operated on automatically derived representations and included a peripheral 
knowledge base to improve the evaluation of various parts of the solution path.  
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MEDIATOR (Simpson, 1985) was the earliest application of case-based reasoning 
(CBR) to analogy-making. Prodigy/Analogy (Veloso & Carbonell, 1993) combined CBR and 
Carbonell’s derivational approach to analogy-making. This architecture was explicitly 
designed to scale up to larger domains and a number of empirical results have shown that, as 
the number of stored episodes, the integrated learning system apparently did keep search 
requirements under control.  

Winston (1978) developed the notion of transfer frames. Two objects (one source, one 
target) were presented to the program as being similes. Mappings were then made by the 
program between the source and target based on the most salient properties of the source, the 
prototypicality of the information in the target, and the instructional context provided by a 
tutor. After checking for inconsistencies with respect to these criteria, properties were 
transferred from the source to the target. This work was extended (Winston, 1980, 1982) to a 
model of analogical reasoning in which, in order to respond to a particular query, a rule was 
extracted from the source situation based on attributional and relational information in the 
source situation. This rule, based on consistent relational structure, was used to answer the 
target query. 

Winston’s work anticipated, in some sense, Gentner’s (1983) Structure Mapping Theory 
(SMT). (See Box 2.) SMT is unquestionably the most influential work to date on the 
modeling of analogy-making and has been applied in a wide range of contexts ranging from 
child development to folk physics. SMT explicitly shifts the emphasis in analogy-making to 
the structural similarity between the source and target domains. Two major principles 
underlie SMT:  

•  the relation-matching principle: good analogies are determined by mappings of 
relations and not attributes (originally only identical predicates were mapped) a nd 

•  the systematicity principle: mappings of coherent systems of relations are preferred 
over mappings of individual relations. 

This structural approach was intended to produce a domain -independent mapping process.  
The Structure Mapping Engine (SME) was the computational implementation of SMT 

(Falkenhainer, Forbus & Gentner, 1989). More recent versions of SME have explored the use 
of pragmatics, as well as re-representation techniques that allow related, but not identical, 
predicates to match (Falkenhainer, 1990). MAC/FAC (Gentner & Forbus, 1991, Forbus, 
Gentner, & Law, 1995), a two-stage analogical retrieval engine, was later developed as a 
front-end to SME. The first stage of its retrieval process consists of a sweep through LTM 
retrieving many potentia l source episodes based on superficial search; the second stage is a 
detailed best-match process designed to select the best matches to the target. Only then does 
the structure mapping phase begin. MAGI (Ferguson 1994), another SME-based model, 
detects regularity within a given situation or scene by seeking maximally consistent mappings 
among its parts. Depending on the nature of the mappings found, elements of the scene can 
be categorized as being repetitions, or symmetrical. This structural notion of regularity 
applies to conceptual as well as perceptual materials. 

IAM (Keane & Brayshaw, 1988; Keane et al, 1994) incrementally maps portions of a 
base domain to the source, thereby gradually building up a single interpretation based on 
selected portions of the domain rather than on many alternative interpretations. If the 
mapping produced is not optimal then this mapping will be abandoned and another 
constructed. The completely serial nature of IAM processing, however, has produced doubts 
about its ability to scale up (Forbus et al, 1994).  

I-SME (Forbus et al, 1994) is an incremental version of SME based, in part, on the IAM 
architecture. The most significant difference with the latter program is that, instead of the 
strictly serial approach adopted by IAM, I-SME mixes serial and parallel processing.  
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In recent work another SME-based program, SEQL (Kuehne et al, 2000), has been 
applied to infant categorization. The authors suggest that categories are represented via 
structured descriptions and formed by a process of progressive abstraction, through 
successive comparison with incoming exemplars. 

CARL (Burstein, 1986) extends the ideas of Gentner in a multi-stage analogy-making 
program that constructs analogies based on several analogies presented by a teacher in a 
somewhat context -dependent manner. Kedar-Cabelli’s (1985) model of purpose-driven 
analogy attempts to automatically derive relevant structural and functional features in order to 
make mappings. 

Recently, a “path-mapping” model (Salvucci & Anderson, 2001) of how humans 
integrate analogical mapping and problem solving has been developed based on ACT-R 
(Anderson, 1993). ACT-R has also been used in the context of analogy-making to attempt to 
develop a unified theory of metaphor understanding, semantic illusions and text memory 
(Budiu & Anderson, 2000) and to model invention by analogy (Murdock et al, 1998). 

 A final pair of symbolic models, BORIS (Lehnert et al, 1983) and MORRIS (Dyer, 
1983), deserve mention. These programs attempt to understand narrative through the use of 
abstract “thematic abstraction units,” which closely resemble Schank’s (1982) Thematic 
Organization Points (TOPS) implemented in a dynamically organized memory. Analogies in 
these models are recognized largely through structural relations, rather than with simple 
attribute information. 

  
Connectionist Models 

 
Symbolic systems are generally well equipped to model relational structures involving 

situations represented as objects and relations between objects. For this reason, these models 
held the high ground for many years in the computational modeling of analogy-making. 
However, due largely to recent advances in their representation techniques, connectionist 
models have taken their place alongside symbolic models of analogy-making. Most 
importantly, distributed connectionist representations provide a natural internal measure of 
similarity, thereby allowing the system to handle with relative ease the problem of similar, 
but not identical, relations, a problem that has proved difficult for symbolic models. 

ACME (Holyoak & Thagard, 1989) was the first attempt to develop an architecture in 
which analogy-making was an emergent result of constrained, parallel activation of states of 
in a neural network-like structure. In this model, structural similarity, semantic similarity, and 
pragmatic importance determine a set of constraints to be simultaneously satisfied. The 
model is supplied with representations of the target and source and proceeds to build a 
localist constraint-satisfaction network in which hypothesis nodes correspond to all possible 
hypotheses pairing the elements of the source with those of the target. Excitatory and 
inhibitory links between these nodes implement the constraints. In this way, contradictory 
hypothesis nodes compete and do not become simultaneously active, while consistent nodes 
mutually support each other. The relaxation of the network provides a parallel evaluation of 
all possible mappings and finds the best one, represented by the set of most active hypothesis 
nodes. ARCS (Thagard et al, 1990) is a model of retrieval that is coupled with ACME in 
which mapping is dominated by structural similarity and retrieval is dominated by semantic 
similarity.  

One of the most ambitious connectionist models of analogy-making, LISA (Hummel & 
Holyoak, 1997), can reasonably be called a descendant of ACME. Whereas ACME required 
all objects in the source to be pairwise connected to all elements in the target, LISA relies on 
more plausible mechanisms, such as partially distributed representations of concepts, 
selective activation and dynamic binding as the means of associating the relevant structures. 
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Only node structures that oscillate in synchrony are bound together (Shastri & Ajjanagadde, 
1993; Sougné, 1996). Crucially, the synchronous binding mechanism means that both WM 
and LTM can interact during both retrieval and mapping. LISA successfully integrates the 
process of retrieval of a base and the mapping of the base and target. 

STAR-1, designed to solve proportional analogies, was the first distributed connectionist 
model of analogy-making (Halford, et al, 1994) and is based on the tensor product 
connectionist models developed by Smolensky (1990). STAR-2 (Wilson, et al., 2001) is a 
recent and more complex version of STAR-1, developed in an attempt to achieve a better 
understanding of the development of analogy-making capabilities in children.  

DRAMA (Eliasmith & Thagard, 2001) is a recent connectionist model of analogy-
making that implements holographic reduced representations (Plate, 1995), a type of 
convolution-correlation memory (Metcalfe-Eich, 1985). This program, using fully distributed 
representations of concepts, attempts to integrate the semantics and structure of the base and 
target during the mapping process.  

Jani & Levine (2000) have developed a neural network approach to analogy-making 
based on Adaptive Resonance Theory (Carpenter & Grossberg, 1986). This system has a 
concept association mechanism based on synaptic triads, and explicitly appeals to 
neurobiological plausibility. Analogator (Blank, 1996) is a connectionist model that learns to 
make analogies by seeing numerous analogies.  

  
Hybrid Models  

 
Hybrid models share features of both connectionist and symbolic models. (The term 

“connectionist” here is meant to be broadly construe d, encompassing architectures that rely 
on connectionist-like mechanisms such as spreading activation among node structures, 
excitation and inhibition between nodes, etc.)  The first two models discussed here rely on 
agent-based approaches to analogy-making.  

COPYCAT (Mitchell, 1993; see Box 3), TABLETOP (French, 1995), LETTER-SPIRIT 
(McGraw, 1995), and METACAT (Marshall & Hofstadter, 1997) form a family of models 
whose basic architectural principles were described by Hofstadter (1984, 1995). Three of the 
most important features of these models of analogy-making are i) their ability to build up 
their own representations of the source and target as well as the mapping between them via an 
agent-driven interaction between top-down (LTM) and bottom-up (WM) processing, ii) their 
use of (simulated) parallelism, and iii) their stochastic nature. These models abandon 
traditional sequential processing and allow representation-building and mapping to run in 
parallel and to continually influence each other. In this way, partial mappings can have an 
impact on further representation-building (and vice-versa), thus allowing the gradual 
construction of context-sensitive representations.  

AMBR (Kokinov, 1988), an analogical problem-solver, is based on the principles of the 
DUAL model (Kokinov, 1994), a general, context-sensitive cognitive architecture consisting 
of many micro-agents each of which represents a small piece of knowledge. Each micro-
agent has a symbolic part that encodes the declarative and/or procedural knowledge it is 
representing and a connectionist part that computes the agent's activation level, which 
represents the relevance of this knowledge to the current context. The AMBR model, and its 
later extension, AMBR-2 (Kokinov & Petrov, 2000), implements the interactive parallel 
processes of recollection, mapping and transfer that emerge from the collective behavior of 
the agents and the result of which is an analogy, but also a re-representation of the old 
episode which may turn out to be illusory memory.  

Other hybrid models that combine symbolic and connectionist mechanisms, use 
spreading activation mechanisms, node structures implementing knowledge bases, etc., 
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include ASTRA (Eskeridge, 1994) and ABR-Conposit (Barnden, 1994). ASTRA implements 
“continuous analogical reasoning” that recognizes the importance of integrating the various 
stages of analogy-making rather than treating them independently. ABR-Conposit (Barnden, 
1994) is an implementation of Analogy-Based Reasoning that implements WM-WM 
matching, creates and modifies WM representations, and manipulates complex data structures 
in an explicit attempt to bridge the symbolic -connectionist gap. 

 
 

Conclusion 
 
We have presented a brief, and necessarily incomplete, survey of computational models 

of analogy-making over the last 35 years. These models are divided into three broad classes: 
those who architectures are based largely on the principles of the symbolic tradition of 
artificial intelligence, those that draw on connectionist principles and hybrid models that 
depend on a combination of these principles. Great challenges lie ahead for the field, among 
them, the development of context -sensitive ways for analogy programs to converge on 
precisely the “right” representations that allow a particular analogy to be made, the 
systematic incorporation of learning mechanisms into the programs, and, of course, the 
development of programs that can effectively scale up. 
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Box 1 
 
ANALOGY (Evans, 1968), one of the earliest analogy-making programs attempts to 
“construct a rule which transforms Figure A into Figure B and Figure C into exactly one of 
the five answer figures.” The representation module first analyzes the input (written as a low-
level description, rather than being the actual figures) and describes figure A, for example, as 
((inside P2 P3) (above P1 P3) (above P1 P2)). Similar representations are made for figures B 
and C and for the five test figures. Based on these representations, the program matches the 
most similar descriptions in order to discover the correct analogy. Notice that the program 
has no semantic knowledge about the figures it manipulates. For example, it does not know 
that squares and rectangles are generally closer in people’s minds than, say, squares and 
letters. 
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Box 2 
 
SME, the Structure Mapping Engine (Falkenheimer et al, 1989), a computational 
implementation of the Structure Mapping Theory (Gentner, 1983) has been the most 
influential computational model of analogy-making to date. It receives predicate -calculus 
representations of the base and source and searches both representations to determine where 
there are structural similarities between them. It builds a mapping between the two situations 
based on these structures and their overall coherence. Discovering two matching systematic 
structures (heavy lines) in the source (Solar system) and in the target (Rutherford atom) 
allows the program to transfer structure found in the source to the target (in this case, to 
conclude that the cause of the electron revolving around the nucleus is the charge). It is hard 
to know how what conclusions SME might have drawn if the representation of the Rutherford 
atom had also included the fact that, in addition to electrical forces, there are gravitational 
forces between the nucleus and the electron (for a discussion of this point, see French, 1995). 
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Box 3 
 
COPYCAT (Hofstadter, 1984; Mitchell, 1993) solves letter-string analogies of the form: 
ABC:ABD::KJI:? and gives probabilistically possible answers like LJK, KJJ, KJD, etc. The 
architecture of COPYCAT involves a working memory, a semantic network (simula ting 
LTM) defining the concepts used in the system and their relationships, a procedural memory 
storing small, nondeterministic computational agents (“codelets”) that build, examine and, 
possibly, destroy the structures in the working memory and continually interact with the 
semantic network. The system gradually settles towards a set of consistent set of structures 
that will determine the mapping between the base and the target.  
 
 

 


