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Abstract
Christopher Green's (1998) article is an attack on most current connectionist models of
cognition. Our commentary will suggest that there is an essential component missing in
his discussion of modeling — namely, the idea that the appropriate level of the model
needs to be specified. We will further suggest that the precise form (size, topology,
learning rules, etc.) of connectionist networks will fall out as ever more detailed
constraints are placed on their function.

 1. Every model should be accompanied by a clear indication of the level for which the model is
appropriate. This is a necessary condition to making sense of a model of anything. If this is not
done -- and, unfortunately, it rarely is -- every model becomes either false or meaningless at some
level of consideration. For example, a symbolic, grammar-based model of language processing
could undoubtedly be used to do a good job of translating, for example, sewing machine-assembly
manuals. Thus, for the high- level task of translating short, declarative sentences that employ a very
restricted vocabulary, the proposed model is indistinguishable from other models that might use
lower-level structures or more complex mechanisms to achieve the same end. It is only once we
begin to probe this level in a Turing-test like manner (Cleeremans & French, 1996; French, 1990,
1995), that differences in the two models will become apparent, thus revealing something about the
mechanisms underlying the behavior.

2. The reason that this approach is necessary is that at some level all models of any phenomenon
will fail - since the model and the phenomenon being modeled are not literally one and the same
thing While this certainly should not automatically disqualify them from being good models, it
does mean, however, that modelers must specify the level at which their models are appropriate.
For example, the Newtonian and the Einsteinian models of physics are indistinguishable for the
speeds at which most objects generally encountered on earth move. However, when these models
are "probed" at speeds approaching that of light, the Newtonian model falls short.

3. In a somewhat analogous manner, we can compare symbolic and connectionist models of
cognition. As long as we restrict cognitive behavior to certain high-level phenomena encountered,
say, in chess-playing, route-finding, sentence parsing, grammatical transformations, strategy-
planning, etc., a symbolic account is, like Newtonian physics, a perfectly adequate (and
appropriate) model. However, as soon as we begin "probing" the symbolic account by considering
how well it handles generalization, how well it deals with partial information, how fault tolerant it
is, etc., insufficiencies in this account come to light. Connectionist modelers believe, by and large,



that the number and magnitude of these insufficiencies justify adopting a subsymbolic level of
modeling. But is the new (connectionist) model that does what the old (symbolic) model does, in
addition to being able to handle tasks the old model could not, a better model? Not necessarily,
Green would say. It depends on the degree to which we can understand what the model is actually
doing.

4. This leads us to one of Green's (1998) key points. Consider the problem of designing a system
that will be able to balance a free-standing pole on a mobile cart by moving the cart in an
appropriate direction each time the pole begins to fall over. One system, a traditional symbolic
system, consists of rules based on equations that will specify exactly how the cart must move so as
to maintain the pole upright. Studying this system ("opening the box," so to speak) really does
allow us to know something about underlying pole-balancing mechanisms. Furthermore, we can
make predictions about what would happen if, say, we used a thicker pole, a heavier pole, a longer
pole, etc. Compare this to a second system - connectionist this time - that "merely" learns how to
move the cart so as to balance the pole. In the latter case, Green would claim we have learned
nothing because there is no explicit semantic content to the nodes and connections in the
connectionist network. In other words, looking inside the box tells us nothing that we didn't know
already.

5. But this is false. Looking inside the connectionist box does indeed tell us a LOT and if we look
carefully, we will discover a lot more. To begin with, we learn a highly non-obvious fact: That a
system with a particular topology, particular rules of activation passing, certain learning algorithms,
etc., can, in fact, produce pole-balancing behavior. That, in itself, is extremely surprising and can
only be achieved by a vanishingly small subset of all possible architectures. Furthermore - and
Green does not seem to be aware of the research in this area - there are a wide range of techniques
to extract high-level rules from neural networks (Towell & Shavlik, 1993). In fact, in cases in
which this can be done, one can argue without too much difficulty that the system is following a
rule, even if that rule is not implemented as it would have been in a symbolic system. When this is
done, groups of units acquire the semantics that boxes and labels have in symbolic models. What
makes this particularly exciting in the case of connectionist networks is precisely the fact that the
semantics emerge out of the interplay of processing principles specified at a sub-symbolic level.
Thus, in contrast to more classical approaches, connectionist theorists believe they can learn
something by evolving their networks rather than by fully specifying each of their components (see
Content & Frauenfelder, 1996). While this strategy can indeed produce models that merely fit the
data, we believe it is just as clear to most connectionists as it is to Green that merely fitting the data
does not amount to theory-building. That is precisely why there are so many instances of
connectionist research in which the emphasis is put on detailed analysis of internal representations,
processing characteristics, and the like. One needs to look no farther than Rosenberg's (1987)
analysis of the "structure of NETtalk's internal representations" to realize that ever since the early
days of connectionist modeling, researchers were developing ways to peer inside the box and
understand what was going on. What is gained in this process of dual exploration (of the modeling
and modeled spaces) -- namely, an understanding of function that is rooted in the dynamics of
evolution, development and learning -- is unlike anything that can be achieved by specifying the
semantics of each component of the model, as in more traditional models.

6. So, what do the nodes of a neural network correspond to? The answer to this question seems to
be of overwhelming importance to Green. He believes that they must be made to correspond as
closely as possible to real neurons. But why stop at neurons? In fact, this would seem to be a rather
arbitrary choice. Why not synapses? Why not vesicules on the membranes of synapses? Why not
neurotransmitters? Why not the molecules making up neurotransmitters in the vesicules in the
synapses of the neurons? The point is that even if the nodes of connectionist models were designed
to correspond as closely as possible to real neurons, they would not be real neurons and,



consequently, the model would be false at some level. Just ask people who do actually model the
collective behavior of real neurons. Even though the neurons they use are incomparably more
sophisticated than the modified McCulloch-Pitts types used in most connectionist models, these
researchers nonetheless come under fire from neurobiologists who continually complain about the
egregious oversimplifications of these models.

7. The point is that most researchers in cognitive modeling believe that we will not need to go
below a certain level of modeling precision (groups of neurons?) in order to model what is
normally thought of as the full range of human cognition. But for the moment it is premature to
insist on physical correspondences with real brains. Connectionists are still grappling with issues of
function: what types of organizational architectures are able to give rise to phenomena such as
priming, implicit learning, incubation, tip-of-the-tongue, gradual forgetting, etc. As our ability to
simulate human cognitive function becomes more and more refined, form will invariably follow.
Function, sufficiently constrained, implies form.

8. Consider an example to illustrate this crucial principle. Assume the function under considered is
the highly unconstrained "to fly". With respect only to the ability to fly -- i.e., moving from point A
to point B in the air -- hummingbirds and jet airplanes are indistinguishable. But as we "probe"
function in an ever more detailed manner, we claim that form will be increasingly determined. For
example, we can probe the flying function with questions like "Does it allow landing on a
sunflower?" (Yes.) "Does it permit turning 90 degrees in mid- flight?" (Yes.) "Does it include the
ability to hover in mid- air?" (Yes.) "Does it produce a high pitched buzzing sound?" (Yes.), etc.
The longer and more specific the probing of the function of flying is, the more the form of the
flying object in question will ultimately come to resemble a hummingbird.

9. For this reason, connectionists are justified in remaining vague in their claims of physical
correspondences between their networks and the human brain. And it is for this reason that when
Green insists that "...the success of connectionist models seems to DEPEND upon the fact that any
give unit can send excitatory impulses to some units and inhibitory impulses to others. No neuron
in the mammalian brain is known to do this...," his claim falls on deaf ears. Not only has it been
clearly been demonstrated (see, for example, Shepard, 1988, p. 163) that a single neuron can have
more than one type of neurotransmitter and "can mediate opposite synaptic actions to different
follower cells or to a single follower cell," but, more importantly, his comment misses the point.
Whether nodes correspond to single neurons, groups of synapses, or groups of neurons is, in some
sense, irrelevant. Connectionists are trying to establish overall architectures that implement certain
specific principles and allow them to simulate various aspects of human cognitive function. The
question of form -- in particular, exactly what nodes of connectionist networks correspond to -- will
take care of itself as we put more and more constraints on the networks' function.
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