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A Recurrent Connectionist Model of Group Biases  

Abstract 
Major biases and stereotypes in group judgments are reviewed and modeled from a 

recurrent connectionist perspective.  These biases are in the areas of group impression formation 
(illusory correlation), group differentiation (accentuation), stereotype change (dispersed versus 
concentrated distribution of inconsistent information), and group homogeneity.  All these 
phenomena are illustrated with well-known experiments, and simulated with an auto-associative 
network architecture with linear activation update and delta learning algorithm for adjusting the 
connection weights.  All the biases were successfully reproduced in the simulations.  The 
discussion centers on how the particular simulation specifications compare to other models of 
group biases and how they may be used to develop novel hypotheses for testing the connectionist 
modeling approach and, more generally, for improving theorizing in the field of social biases and 
stereotype change.   
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Petite, attractive, intelligent, WSF, 30, fond of music, theatre, books, travel, seeks warm, 
affectionate, fun-loving man to share life’s pleasures with view to lasting relationship.  Send photograph.  
Please no biochemists.  
(Personal ad, New York Review of books, cited in Barrow, 1992, p.2) 

 
The ability to learn about groups and their characteristics is crucial to the way people 

make sense of their social world.  Nevertheless, quite a number of studies have indicated that 
people can have great trouble learning associations between groups and their attributes and often 
perceive associations that do not exists.  It is generally assumed that these shortcomings or 
biases are partly responsible for group stereotyping and minority discrimination. Among the 
most prominent of these group biases are illusory correlation — the perception of a correlation 
between a group and some characteristics that do not exist (Hamilton & Gifford, 1976; Hamilton 
& Rose, 1980), accentuation — making a distinction between groups beyond actual differences 
(Tajfel & Wilkes, 1963; Eiser, 1971), subtyping — the rejection of stereotype-inconsistent 
information concentrated in a few group members (Hewstone, 1994), and outgroup homogeneity 
— the perception of outgroups as more homogeneous and stereotypical than the ingroup 
(Linville, Fisher & Salovey, 1989; Messick & Mackie, 1989). 

It is thus of crucial importance to psychologists to understand how these biases are 
created and how they can be eliminated (Hewstone, 1994).  However, many empirical reports on 
the occurrence of group biases were explained by appeals to what often appear to be rather ad-
hoc hypotheses and assumptions.  Moreover, the field of group perception has developed largely 
independent from other important areas in cognition at large and social cognition in particular, 
including domains such as person perception, impression formation, attribution and attitudes 
(Hamilton & Sherman, 1996).  There have been some recent attempts, however, to provide a 
common theory of group judgments and shortcomings under the heading of exemplar-based 
models (Smith, 1991, Fiedler, 1996) or a tensor-product connectionist network (Kashima, 
Woolcock & Kashima, 2000).  The goal of the present paper is to build further on these initial 
proposals and to present a connectionist model that potentially can explain a wider range of 
group biases than these earlier attempts.  Moreover, the proposed model has already been 
fruitfully applied to other areas in memory and cognition (for a classic example, see McClelland 
& Rumelhart, 1986, p. 170), including the domain of social cognition (Read & Montoya, 1999; 
Smith & DeCoster, 1998; Van Overwalle & Jordens, 2002; Van Overwalle & Labiouse, 2002; 
Van Overwalle, Siebler & Labiouse, 2002), where it has been applied to encompass and 
integrate earlier algebraic models of impression formation (Anderson, 1981), causal attribution 
(Cheng & Novick, 1992) and attitude formation (Ajzen, 1991).   

Our basic claim is that a connectionist account of group biases does not require special 
processing of information as many theories in social cognition posit (e.g., Hamilton & Gifford, 
1976; Hastie, 1980).  Rather, general information processing characteristics captured in general-
purpose connectionist models lead to these biases.  What are the characteristics that accomplish 
this? 

First, connectionist models exhibit emergent properties such as the ability to extract 
prototypes from a number of exemplars (prototype extraction), to recognize exemplars based on 
the observation of incomplete features (pattern completion), to generalize knowledge about 
features to similar exemplars (generalization), to adjust to multiple constraints from the external 
environment (constraint satisfaction), and to lose stored knowledge only partially after damage 
(graceful degradation). All of these properties have been extensively reviewed in Smith (1996) 
and McLeod, Plunkett & Rolls (1998).  It is clear that these characteristics are potentially useful 
for any account of group stereotyping.  In addition, connectionist models assume that the 
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development of internal representations and the processing of these representations are done in 
parallel by simple and highly interconnected units, contrary to traditional models where the 
processing is inherently sequential.  As a result, these systems have no need for a central 
executive, which eliminates the requirement of previous theories of explicit (central) processing 
of relevant information.  Consequently, biases in information processes are, in principle, due to 
implicit and automatic mechanisms without explicit conscious reasoning. Of course, this does 
not preclude people’s being aware of the outcome of these preconscious processes.   

Second, connectionist networks are not fixed models but are able to learn over time, 
usually by means of a simple learning algorithm that progressively modifies the strength of the 
connections between the units making up the network. The fact that most traditional models in 
psychology are incapable of learning is a significant restriction.  Interestingly, the ability to learn 
incrementally can put connectionist models in agreement with developmental and evolutionary 
pressures.  This implies that group biases emerge from general processes that are otherwise quite 
adaptive. 

Third, connectionist networks have a degree of neurologically plausibility that is 
generally absent in previous approaches to integration and storage of group information 
(Anderson, 1981; Ajzen, 1991).  While it is true that connectionist models are highly simplified 
versions of real neurological circuitry and processing, it is commonly assumed that they reveal a 
number of emergent processing properties that real human brains also exhibit.  One of these 
emergent properties is the integration of long-term memory (i.e., connection weights), short-term 
memory (i.e., internal activation) and outside information (i.e., external activation).  There is no 
clear separation between memory and processing as there is in traditional models. Even if 
biological constraints are not strictly adhered to in connectionist models of group prejudice, 
interest in the biological implementation of social cognitive mechanisms has indeed started to 
emerge (Adolphs & Damasio, 2001; Ito & Cacioppo, 2001; Ochsner & Lieberman, 2001) and 
parallel the increasing attention paid to neurophysiological determinants of social behavior.   

This article is organized as follows: First, we will describe the proposed connectionist 
model in some detail, giving the precise architecture, the general learning algorithm and the 
specific details of how the model processes information. In addition, a number of other less well-
known emergent properties of this type of network will be discussed.  We will then present a 
series of simulations, using the same network architecture applied to a number of important 
biases in group judgments, including illusory correlation, accentuation, stereotype change and 
homogeneity.  Our review of empirical phenomena in the field is not meant to be exhaustive, but 
is rather designed to illustrate how connectionist principles can be used to shed light on the 
processes underlying group judgments.  

While the emphasis of the present article is on the use of a particular connectionist model 
to explain a wide variety of group biases, previous applications of connectionist modeling to 
social psychology (e.g., Smith & DeCoster, 1998; Read & Montoya, 1999; Van Overwalle, 
1998; Van Overwalle & Jordens, 2002) are also mentioned and compared to the present 
approach.. Finally, we will discuss the limitations of the proposed connectionist approach and 
discuss areas where further theoretical developments are under way or are needed. Ultimately, 
what we would like to accomplish in this paper is to create a greater awareness that connectionist 
principles could potentially underlie diverse shortcomings in group judgments, as a natural 
consequence of the basic processing mechanisms in these adaptive cognitive systems. 

A Recurrent Model 
Throughout this paper, we will use the same basic network model - namely, the recurrent 
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auto-associator developed by McClelland and Rumelhart (1986, 1988).  This model has already 
gained some familiarity among psychologists studying person and group impression (Smith & 
DeCoster, 1998; Queller & Smith, 2002), causal attribution (Read & Montoya, 1999) and many 
other phenomena in social cognition (Van Overwalle & Labiouse, 2002; Van Overwalle, Siebler, 
& Labiouse, 2002).  We decided to apply a single basic model to emphasize the theoretical 
similarities that underlie group biases with a great variety of other processes in cognition.  In 
particular, we chose this model because it is capable of reproducing a wider range of phenomena 
than other connectionist models, such as feedforward networks (see Read & Montoya, 1999), 
constraint satisfaction models (Kunda & Thagard, 1996; see also Van Overwalle, 1998), or 
tensor-product models (Kashima, Woolcock & Kashima, 2000).   

The auto-associative network can be distinguished from other connectionist models on 
the basis of its architecture (how information is represented in the model), its learning algorithm 
(how information is processed in the model) and its testing procedure (how knowledge in the 
network is retrieved).  We will discuss these points in turn. 
Architecture 

The generic architecture of an auto-associative network is illustrated in Figure 1.  Its 
most salient property is that all nodes are interconnected with all of the other nodes.  Thus, all 
nodes send out and receive activation.  The nodes in the network can represent groups, attributes 
implied in the descriptions of the group, as well as episodic information on specific behaviors 
and so on.  This, in fact, reflects a localist representation where each node represents a single 
symbolic concept, in contrast to a distributed representation where each concept is represented 
by a pattern of activation across a set of nodes (Thorpe, 1994).  We elaborate on the differences 
between these two representation schemes in the section on Fit and Model Comparisons. 
Information Processing 

In a recurrent network, processing information takes place in two phases.  During the first 
activation phase, each node in the network receives activation from external sources.  Because 
the nodes are interconnected, this activation is spread throughout the network in proportion to 
the weights of the connections to the other nodes.  The activation coming from the other nodes is 
called the internal input (for each node, it is calculated by summing all activations arriving at 
that node).  This activation is further updated during one or more cycles through the network.  
Together with the external input, this internal input determines the final pattern of activation of 
the nodes, which reflects the short-term memory of the network.  Typically, activations and 
weights have lower and upper bounds of  –1 and +1.   

In the linear version of activation spreading in the auto-associator that we use here, the 
final activation is the linear sum of the external and internal input after a single updating cycle 
through the network.  In non-linear versions used by other researchers (McClelland & 
Rumelhart, 1986; Smith & DeCoster, 1998; Read & Montoya, 1999), the final activation is 
determined by a non-linear combination of external and internal inputs updated during a number 
of internal cycles (for mathematical details, see McClelland & Rumelhart, 1988, pp. 161—169).  
During our simulations, however, we found that the linear version with a single internal cycle 
(see p. 167) often reproduced the observed data at least as well.  Therefore, we used this linear 
variant of the auto-associator for all the reported simulations.  We will discuss later why the 
linear variant might have been so efficient. 

After the first activation phase, the recurrent model enters the second learning phase in 
which the short-term activations are consolidated in long-term weight changes of the 
connections.  Basically, these weight changes are driven by the error between the internal input 
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received from other nodes in the network and the external input received from outside sources.  
This error is reduced in proportion to the learning rate that determines how fast the network 
changes its weights (typically between .01 and .20).  This error reducing mechanism is known as 
the delta algorithm (McClelland & Rumelhart, 1988, p. 165—166).   

For instance, if the external input on group membership is underestimated (e.g., because 
the internal input predicts a weak or ambiguous member of the group while that person is 
actually is a very typical member), the connection weights with the group unit are increased to 
reduce this discrepancy.  Conversely, if the external input on group membership is overestimated 
(e.g., because the internal input predicts an overly idealized prototypical member), the weights 
are decreased.  These weight changes allow the network to better approximate the external input.  
Thus, the delta algorithm strives to match the internal predictions of the network as closely as 
possible to the actual state of the external environment, and stores this information in the 
connection weights.   
Testing 

To test the knowledge embedded in the connections of the network, we applied a 
procedure analogous to measuring human responses, that is, where participants are cued with 
questions on the experimental stimulus material learned previously.  To accomplish this, some 
concepts in the network served as a cue to retrieve related material in the network (e.g., a group 
label may serve as a cue to estimate group attributes), by turning the activation of the cue on to 
+1.  A series of adjustments by the learning algorithm during learning results in a certain 
configuration of connection weights in the network.  This configuration determines how 
activation flows through the network and activates related concepts.  The degree to which these 
other, related concepts are activated is taken as a measure of retrieval in memory, and may be 
indicative of various responses such as estimation (e.g., of groups attributes) or recognition (of 
group member's behaviors).   

A Recurrent Implementation of Group Biases: Illusory Correlation 
To provide some background to our specific implementation of group biases, we 

illustrate its major characteristics with the phenomenon of illusory correlation.  Illusory 
correlation occurs when perceivers erroneously see a relation between categories that are 
actually independent.  For instance, minorities or outgroups are often stereotyped with bad 
characteristics, although these characteristics sometimes occur in equal proportions in the 
ingroup.  The earliest demonstration of illusory correlation in a group context comes from a 
study by Hamilton and Gifford (1976).  Participants read about members of two groups A and B 
that engaged in the same ratio of desirable to undesirable behaviors (9:4), but twice as many 
behaviors referred to members of group A than to members of group B.  Although there was no 
objective correlation between group membership and desirability of behavior, participants 
showed greater liking for the majority group A than for the minority group B.  In sum, the 
typical finding in illusory correlation research is decreased evaluation for minority group B, 
together with increased memory for undesirable group B behavior (for reviews see Hamilton & 
Sherman, 1989; Mullen & Johnson, 1990).   

To account for these two distinct effects in illusory correlation, we introduce a recurrent 
connectionist model that permits encoding and retrieval of two types of information.  One type 
of information concerns some salient regularity or attribute about the group (such as desirability) 
and is assumed to underlie the evaluative (i.e., likeability) judgments in illusory correlation.  The 
other type of information involves specific episodic knowledge about the behavioral items and is 
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assumed to account for the memory effects. 
We have chosen a “localist” encoding scheme, that is, each piece of information (or 

concept) is represented by a single node.  Figure 2 shows how the two groups, A and B, are each 
represented by a group node and how the implied attribute (i.e., desirable or undesirable) is 
represented by two separate attribute nodes.  Two separate unitary attribute nodes were taken 
rather than a bipolar attribute node (with positive and negative activation to represent desirable 
and undesirable stimuli respectively) because our evaluations about groups are not represented 
as a single point on a one-dimensional construct, but are probably more mixed and complex 
including both positive and negative instances of the attribute (Wittenbrink, Judd & Park, 2001).  
In order to explain memory for specific statements presented, we also include episodic nodes 
that reflect the specific (i.e., behavioral) information contained in the statements.  Episodic 
memory refers to information about particular events that have been experienced (Tulving, 
1972).  The important advantage of episodic nodes is that they preserve information about 
discrete events in the network.    In sum, we assume that the unique meaning of each behavioral 
statement in an illusory correlation experiment is encoded at two levels: Its evaluative meaning 
("the behavior is good") and its unique episodic meaning ("helps an old lady across the street").  
By representing different aspects (or features) of each piece of information over two nodes, 
evaluative and episodic, this model in fact uses a semi-localist encoding scheme.   

It is instructive to note that although in principle, in an auto-associative network, all 
interconnections between all nodes play a role, to understand the present simulations, the reader 
should focus mainly on the connections between different sets of nodes (e.g., between attribute 
nodes, episodic nodes, and group nodes) that are of most relevance for explaining group biases, 
while the lateral interconnections linking the same sets of nodes are less relevant (contrary to 
spreading activation models of impression formation, e.g., Hastie & Kumar, 1979).  The 
connections between episodic nodes and group nodes (in both directions) are collectively termed 
episodic connections, while the connections between evaluative attribute nodes and the group 
nodes (in both directions) are termed evaluative connections.   

The delta learning algorithm gives rise to a number of emergent properties that are used 
to explain all the effects associated with group biases.  Below, we describe two of the most 
important properties and illustrate their effect on the illusory correlation bias.   
Acquisition Property and Sensitivity to Sample Size 

According to the delta algorithm, the more an attribute such as an (un)desirable behavior 
is presented with information on group membership, the stronger the connection between the 
corresponding (un)desirability attribute node and group node becomes.  This illustrates an 
important property of the delta learning algorithm, namely that as more confirmatory information 
is received, the connections gradually grow in strength.  We call this the acquisition property.  
Thus, in the beginning phases of learning (before asymptote is reached), the connection weights 
reflect the amount of evidence, that is, the network is sensitive to sample size.     

The sensitivity to sample size of the delta algorithm has already been exploited in the 
earlier associative learning models that preceded connectionism, such as the popular Rescorla-
Wagner (1972) model of animal conditioning and human contingency judgments.  This model 
predicts that when a cue (i.e., conditioned stimulus) is followed by an effect (i.e., unconditioned 
stimulus), the organism integrates this information resulting in a stronger cue-effect association 
and more vigorous responding when the cue is present.  In humans, this also results in stronger 
judgments of the causal influence of the cue (see Baker et al. 1989; Shanks, 1985a, 1987, 1995; 
Shanks, Lopez, Darby & Dickinson, 1996; Van Overwalle & Van Rooy, 2001).  Sample size 
effects have also been documented in many areas of cognition.  For instance, when receiving 
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more supportive information, people tend to hold more extreme impressions about other persons 
(Anderson, 1967, 1981), make more extreme causal judgments (Baker, Berbier & Vallée-
Tourangeau, 1989; Shanks, 1985a, 1987, 1995; Shanks et al., 1996), make more polarized group 
decisions (Fiedler, 1996; Ebbesen & Bowers, 1974), endorse more firmly an hypothesis (Fiedler, 
Walther & Nickel, 1999), make more extreme predictions (Manis, Dovalina, Avis & Cardoze, 
1980) and agree more with persuasive messages (Eagly & Chaiken, 1993).    

How does the acquisition property explain illusory correlation?  The mechanism is 
straightforward.  Because of the larger sample size in the majority group A, its evaluative  
connections are stronger at the end of learning than the corresponding connections for the 
minority group B.  Thus, both the connections with desirability and undesirability are stronger 
for group A than for group B.  As a result, the relative proportion of desirable versus undesirable 
information is more clearly encoded in the evaluative connections of the network for majority 
group A than for minority group B, resulting in a more favorable impression overall for the 
majority group A.  In addition, this also means that the mental representation of the majority 
group A, in contrast to the minority group B, will consist of well-established connections 
between group membership and (un)desirability of behavior, so that the perceiver can form a 
relatively correct impression of the majority group.  It is important to note, however, that when 
both groups become larger, the relative advantage of the majority group A will be lost as the 
evaluative connections of both groups will reach their asymptote.  However, this is not typical of 
illusory correlation experiments, where the number of statements is most often less than 20 for 
each group. 

Figure 3 depicts an simulated example of this process.  We focus here on the connections 
from the group nodes to the desirability and undesirability nodes.  We simulated the presentation 
of desirable and undesirable statements on the groups by activating, for each statement, the 
respective desirability nodes and group nodes.  After each statement, we tested the strength of 
the evaluative connections by cuing each group node and measuring how much of the activation 
was spread to the desirability nodes.  As can be seen, the strength of the evaluative connections 
increases as a  function of the growing number of statements.  The top half of the figure shows 
this for majority group A, the bottom half for minority group B.  Every time a statement is 
presented (for instance “John helps an old lady across the street”), the simulated evaluation 
increases.  Although the increase with each statement is equal for both groups, the larger amount 
of statements (larger sample size) for group A results in stronger connections and a larger 
difference between desirable and undesirable evaluations for the majority group A than for the 
minority group B (Da > Db in the figure).  As a minor point, note that the evaluations after four 
trials in Figure 3 differ between groups A (.36) and B (.25) because the lateral connections 
between the nodes also differ in number between groups (these curves would have been exactly 
similar if lateral connections were omitted such as in feedforward network models, discussed 
later). 
Competition Property and Discounting 

In order to explain enhanced memory for negative behaviors and for minority behaviors, 
we now turn to the episodic nodes that reflect memory during illusory correlation.    We propose 
that a memory advantage for these infrequent behaviors in recognition measures, where episodic 
nodes presumably serve as retrieval cue to remember the group, may in part be produced by what 
has been termed the competition property of the delta learning algorithm (Shanks, 1995; Van 
Overwalle & Van Rooy, 1998).  The term “competition” stems from the associative learning 
literature on animal conditioning and causality judgments where it is also known as blocking 
(Rescorla & Wagner, 1972; Shanks, 1995), and should not be confused with other usages in the 
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connectionist literature such as competitive networks (McClelland & Rumelhart, 1988).   
The competition property favors features that are more diagnostic than others, which are 

disfavored.  A typical example is discounting in causal attribution.  When one cause acquires 
strong causal weight, perceivers tend to ignore alternative causes. As noted by several 
researchers (Read & Montoya, 1999; Van Overwalle, 1998), competition in learning is also a 
hallmark of the Rescorla-Wagner (1972) model.  Competition is a robust finding in empirical 
research on animal conditioning (Kamin, 1969), human causal learning (Shanks, 1985b) and 
causal attribution (Hansen & Hall, 1985; Kruglanski, Schwartz, Maides, & Hamel, 1978; Van 
Overwalle & Van Rooy, 1998; Read & Montoya, 1999; Wells & Ronis, 1982). 

How does the competition property explain enhanced memory in illusory correlation?  
The basic mechanism behind competition is that only a limited amount of connection strength is 
available during learning.  In illusory correlation, this limitation is a function of the external 
activation of a group node (limited to +1 in the present case to reflect group membership) and of 
the internal activation received from other evaluative and episodic nodes, and affects the 
connections from the evaluative and episodic nodes to the group nodes (see upward arrows in 
Figure 2).  Because the delta algorithm seeks to match internal with external activations, the 
internal activation received from the evaluative and episodic nodes (and hence also their 
connection weights) cannot grow out of bounds, as their sum is limited by the upper value of the 
external activation of the group node.  Stated differently, given an upper external activation of 
+1 of a group node, the internal activation sent by episodic and evaluative nodes to that group 
node is limited.  To the extent that the sum of this internal activation approaches or exceeds the 
upper bound, these nodes have to compete for connection weights and the growth of their 
connections is blocked or reduced.  A consequence of this is that strong group→attribute 
connections contribute much more in approaching or exceeding the upper limit than weaker 
group→attribute connections, and so tend to discount or block the further growth of the 
episodic→group connections more.   

To take the acquisition example of Figure 3, the connection weight from the desirable 
node to group A at the end of learning is 0.74, and hence leaves only 0.26 activation available 
before the upper bound of the external activation (+1) of the group node will be exceeded.  
Conversely, the same weight for group B is only 0.51, and there is thus much more room (0.49) 
for increasing the weights of the desirability and other nodes.  Thus, because of the stronger 
attribute→group connections of group A, the episodic→group connections of this group will be 
much more discounted, resulting in reduced memory for behavioral episodes (see schematic 
illustration in Figure 4, top panel).  In contrast, because of the weaker attribute→group 
connections of group B, the episodic→group connections of this group will be less discounted, 
so that they can gain more connection weight resulting in enhanced memory (see Figure 4, 
bottom panel).   By the same mechanism, because the desirable→group connections are larger 
than the undesirable→group connections, the episodic→group connections of positive behaviors 
will be weaker than those of the negative behaviors, resulting in an increased memory for 
negative behavior.  In sum, the competition property generates a memory advantage, not for 
paired distinctive stimuli like the distinctiveness account would predict, but separately for 
undesirable and minority behaviors because of their infrequency 1. 

Summary.  The acquisition and competition properties of the delta learning algorithm 
shape the connections between group nodes, attribute nodes and episodic nodes as information is 
provided about the groups.  Essentially, these properties describe different ways in which a 
growing number of observations affect connections in the network.  The acquisition property 
describes how the attribute connections grow stronger as a function of a growing sample size, 
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and so enables a preponderance of desirable behaviors in the majority group much quicker than 
in the minority group.  As a consequence, no paired distinctive stimuli are necessary to produce 
the illusion correlation effect.  This implication has received empirical support from recent 
studies (Shavitt, Sanbonmatsu, Smittipatana & Posavac, 1999; Van Rooy, 2001), that have 
showed that the effect is obtained without any negative behavioral information on the minority 
group, contrary to the distinctiveness hypothesis.  The competition property describes how 
stronger attribute→group connections inhibit the development of weaker episodic→group 
connections.  This latter  property plays a role in the memory advantage for infrequent behaviors. 

Other Relevant Theories 
Before applying our recurrent implementation to several group biases of interest, we will 

first briefly compare the recurrent approach with the two most relevant models that have been 
proposed in the recent past to explain group biases such as the illusory correlation effect. 
Exemplar Models 

Perhaps the most well known theoretical approach to explain group biases was inspired 
by recent exemplar models of memory (Fiedler, 1996; Nosofsky, 1986; Smith, 1991; Smith & 
Zárate, 1992).  According to exemplar models, perceivers store single exemplars of behaviors in 
memory.  To make a judgment about a target stimulus (e.g., a group), perceivers form a 
composite estimate of activated memory traces of the stored exemplars that are highly similar to 
the target stimulus.  Thus, group judgments are based on specific exemplars that are retrieved 
from memory and aggregated.  In the exemplar models of Smith (1991) and Fiedler (1996; 
Fiedler, Kemmelmeier & Freytag, 1999) that provide the most detailed accounts of social 
judgments, this aggregation is based on a simple or weighted linear summation.  Such an 
aggregation process will cancel out unsystematic perceptual or encoding errors between the 
exemplars, and will reinforce systematic variance.  An important consequence is that less error 
variance is left in the aggregate, the larger the amount of observations.  This is important, 
because as less error variance is left, then perceptions of the group become more accurate, 
alleviating the tendency to make biased judgments.  Hence, exemplar theories essentially explain 
many group biases by information loss or insufficient evidence, and predict that increasing the 
encoding of actual group information can alleviate judgmental shortcomings.  Like the present 
recurrent network, they are thus sensitive to sample size differences. 

One major difference with our recurrent approach is that in exemplar models, information 
about behavioral episodes and their trait or evaluative implication is solely encoded at the 
exemplar level, while (aggregated) attributes are computed at retrieval.  In addition, because the 
evaluative attributes are computed from the exemplars, it is predicted that there should be a 
positive correlation between judgment and memory, that is, lower liking for minority group B 
should result in lower recall for the behavior exemplars also (Fiedler, Russer & Gramm, 1993).  
This stands in contrast to illusory correlation research that shows increased memory for group B 
exemplars (for recent evidence, see Hamilton, Dugan & Trollier, 1985; McConnell, Sherman & 
Hamilton, 1994; Stroessner, Hamilton & Mackie, 1992).  This observed discrepancy between 
judgment (decrease) and memory (increase) was overcome in the implementation of our 
recurrent network by encoding both types of exemplar and attribute information, and by the 
competition property of the delta algorithm.  Such competition mechanism does not exist for 
exemplar-based models.  Another difference is that our model does not require random noise in 
the encoding of the information to explain group biases, because the delta algorithm is an 
acquisition device that in itself is sensitive to sample size differences. 
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Tensor-Product Model 
Kashima, Woolcock and Kashima (2000) proposed a connectionist model of group 

impression formation and change that they called the tensor-product model.  It encodes different 
aspects of social information, including the person, the group to whom he or she belongs to, as 
well as the specific action or characteristics they express.  Like our model, it assumes that this 
information is encoded in memory as connections between sets of nodes reflecting these 
different aspects.  Thus, aggregation of episodic information takes place during encoding rather 
than during retrieval, through the strengthening of the connections between nodes.  The Hebbian 
learning algorithm, which involves a weighted linear summation of information, determines 
weight adjustments.   

One of the most important differences with our recurrent model is that the tensor-product 
model does not say anything about recall of specific behavioral information.   In principle, all 
episodic information is immediately aggregated in the connections and then lost after activation 
fades away.  Moreover, all connections between two nodes are symmetric; while they can differ 
in the recurrent model depending on the direction in which the activation is spread between the 
nodes.   

Another difference is that the Hebbian algorithm applied in the tensor-product model is 
not bounded or normalized as it simply keeps on accumulating the weights from previous 
learning, forcing them beyond -1 and +1.  Normalizing takes place only during judgment, for 
instance, by retrieving appropriate low-end and high-end anchors to calibrate the current 
judgment.  Although research has revealed that people shift their standards of judgment as they 
think of members of different social groups (e.g., an assertive person is judged "very assertive" 
as a women but only "mildly assertive" as a man; Biernat & Manis, 1994), this does not 
necessarily imply that anchors are used during retrieval only.  Perhaps, anchors are also used 
during encoding.  For instance, group stereotypes and norms may act as a context against which 
novel information about members is assessed.  This latter anchoring process is outside the scope 
of the model (although the delta algorithm can address this through the competition property, for 
more details see Van Overwalle & Van Rooy, 1998).  Perhaps, the most important limitation of 
non-normalized learning in the tensor-product model is that it does not allow limiting activation 
at each learning trial, so that competition cannot take place.  As a consequence, the discrepancy 
between information loss and increased memory cannot be accounted for.   

Overview of the Simulations 
In the next sections, we will describe a connectionist simulation of several biases in 

group judgments.  An overview of these simulations is given in Table 1, together with the major 
connectionist property that drives the bias.   
Model Parameters 

For all simulations, we used the linear auto-associative recurrent network described 
above, with parameters for decay and excitation (for internal and external input) all set to 1, and 
with one internal activation cycle.  Node activation was determined by the linear sum of all 
internal and external inputs received at a node (McClelland & Rumelhart, 1988, p. 167).  This 
effectively means that node activation was solely determined by the sum of external and internal 
activation received (after one internal cycle through the network) and that activation decay does 
not play any role in the simulations, nor does multiple cycles of activation updating.  These 
characteristics are identical to recent work by Van Overwalle and colleagues (Van Overwalle & 
Labiouse, 2002; Van Overwalle, Siebler & Labiouse, 2002).   
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As noted earlier, the external input was typically bound between -1 and +1, and this leads 
(with some small deviations) to a similar limitation of the connection weights.  Such a limit is 
not only important to produce competition, but it is also instrumental in preventing the 
connections growing without bound.  The learning rate that determines the speed by which the 
weights of the connections are allowed to change was set to 0.15.  In order to generalize across a 
range of presentation orders, each network was run for 50 different random orders, thus 
simulating 50 different "participants".  All connection weights were initialized at starting values 
of zero.  Unless otherwise stated, most of the effects are relatively robust to changes in 
parameters and stimulus distributions.  Consequently, for simplicity of presentation, a smaller 
number of trials were used in some of the simulations than is typically the case in actual 
experiments.   
Testing the Network 

To test the judgments, categorizations and memory arising from the network, we 
measured how much some concepts in memory are able to activate other concepts.  Thus, we 
simply activated node x and looked at the resulting internal activation of node y.  For instance, to 
measure the attributes associated with a group, the group node that serves as cue is primed by 
turning on its external activation to 1.  This activation then spreads to related nodes in proportion 
to the weights of their connection, and the resulting internal activation (or output activation) is 
then measured (i.e., read off) from the attribute nodes.  This resulting activation can acquire any 
value between approximately -1 and +1, depending on the weight and direction of the 
connections.  In addition, for some judgments, the activation of some nodes was subtracted (i.e., 
got a negative sign) in the calculation of the overall assessment (e.g., the activation of opposing 
valences was subtracted from each other to obtain an overall evaluation measure).  No external 
input activation was provided to the "measurement" nodes, because zero activation is considered 
a neutral resting activating level just in the middle of the -1 and +1 bounds for activation.  
(Providing any extra external activation to nodes that serve as measure would bias the response 
in a given positive or negative direction, and that is of course undesirable).   

To simplify, one might think of this procedure as testing the strength of the connection 
between nodes x and y, because the lateral connections between the same types of nodes quite 
often (but not always) play only a minor role.  (In the section on model comparisons discussed 
later, we will demonstrate that feedforward networks without such lateral connections often do 
as well as recurrent networks).  Note that if more than one output activation was read off, we 
averaged the results so that the total output activation remained between the -1 and +1 bounds. 

We used the same basic cue and measurement nodes throughout all the simulations.  
Unless stated otherwise, for central tendency measures of the group (e.g., liking, frequency 
estimates), the group nodes were turned on and the differential output activation of the attribute 
nodes was read off.  For instance, the resulting activation of the undesirable attribute was 
subtracted from the resulting activation of the desirable attribute to obtain an overall likeability 
estimate.  For central tendency measures of exemplars (e.g., attitude position of statements, 
typicality of members), we used exemplar nodes as cues instead of group nodes.  Recognition in 
the assignment task was simulated by first activating each episodic node, and reading off the 
resulting activation of the group node.  Finally, for measures of variance, the same cues and 
measurement nodes were used as for the central tendency measure of the group, but the resulting 
activation of the two opposing attribute nodes was summed instead of subtracted.  For more 
details, we refer to the each of the simulations and associated tables (were measurement nodes 
are denoted by ?).   

All the results of the simulations are presented together with observed means from an 
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illustrative experiment.  Like many authors in the associative learning domain (e.g., Nosofsky, 
Kruschke & McKinley, 1992; Shanks, 1991), we assume that the relationship between the 
activation resulting from such a test and the judgments by participants is monotonic.   Hence, 
given that we are mainly interested in patterns of the simulated values, the simulated means per 
condition are estimated to fit as closely to the human data using linear regression (i.e., we 
linearly regressed all simulation means onto all human means and use that regression to compute 
human-like values for the simulation).  This procedure also enables us to demonstrate visually 
the fit of the simulations. 

Group Impressions 
How do perceivers develop a stereotyped impression of a group?  Of the many processes 

that may contribute to a biased group perception, we focus on illusory correlation as a 
consequence of sample size differences (as introduced earlier) and as a consequence of prior 
expectancies (to be discussed later).   
Simulation 1: Size-based Illusory Correlation 

As noted earlier, size-based illusory correlation refers to the tendency to perceive 
minority groups as more negative than majority groups, despite an equal preponderance of 
desirable behaviors in the two groups (Hamilton & Gifford, 1976).  This finding has been 
replicated under different conditions and is very robust (see for an overview, Hamilton & 
Sherman, 1989).  An important reason for the popularity of this concept lies in its practical 
implications.  The study of the illusion can give us an insight into the processes underlying the 
formation of social stereotypes and negative attitudes towards minorities in society.   

An experiment that shows many of the typical findings in illusory correlation research 
conducted by McConnell, Sherman and Hamilton (1994, experiment 2) will be used here to 
illustrate our simulation of the bias.  Before proceeding to the simulation, we first discuss the 
most important empirical measures of the illusion and previous rival explanations. 

Evaluative Judgments.   The majority of illusory correlation studies used the same set of 
measures that were originally introduced by Hamilton and Gifford (1976) and that were also 
used by McConnell et al. (1994).  As noted earlier, in many studies these measures showed an 
evaluative bias in favor of the majority group.   

• Likability ratings: McConnell et al. (1994, p. 416) asked their participant to rate "how 
much they thought they would like members of Group A and Group B" on a 10-point 
scale ranging from "strong disliking" to "strong liking", and found that group A was liked 
most. 

• Frequency estimates: For each group, participants were asked “to estimate how many of 
[the behaviors] were undesirable” (p. 416).  The number of undesirable behaviors 
performed by minority group B members was overestimated relative to the number of 
undesirable behaviors performed by majority group A members. 

• Group Assignment: Participants were given each behavior without group assignment and 
then had to indicate "whether a member of Group A or Group B performed the action"  
(p. 416). It was found that disproportionately more undesirable behaviors were attributed 
to the minority group B than to the majority group A. 
Process Measures.  The previous measures record the extent of the illusion, but reveal 

little about the underlying encoding and memory processes that may be responsible for it.  In 
order to explore these processes in more depth, researchers introduced additional process 
measures.  Although the results obtained with these measures are less robust than those obtained 
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with the traditional evaluative measures, they avoid guessing strategies that may cloud memory 
measures.  The following results have been reported:   

• Free recall: Participants were instructed “to write down as many of the behaviors as they 
could recall” (McConnell et al., 1994, p. 416) without receiving any cue about behavior 
or group.  It was found that they remembered disproportionately more undesirable 
behaviors of minority group B than any other condition.  This may imply better encoding 
and memory of these undesirable minority B behaviors.   

• Assignment latencies: In this process measure, the latencies in the group assignment task 
(see above) are recorded.  McConnell et al. (1994) found that participants are fastest in 
assigning undesirable behaviors to the minority group B (but see Klauer & Meiser, 
2000).  As this effect in group latencies shows the same pattern as the free recall data, it 
was again interpreted as a result of better encoding and memory of these behaviors.   
Prior Theoretical Accounts.  What are the theoretical explanations provided for this 

pervasive bias?  The first account of illusory correlation proposed by Hamilton and Gifford 
(1976) was inspired by Chapman’s (1967) original explanation that centered on the 
distinctiveness or salience of stimuli that form a minority.  Hamilton and Gifford (1976) argued 
that the co-occurrence of two infrequent events, that is, undesirable behaviors from a minority 
group, are particularly attention getting and distinct, and therefore received more extensive 
encoding, which in turn leads to greater accessibility in memory.  Because in typical illusory 
correlation experiments undesirable behaviors are a minority, they become especially salient and 
memorable in the minority group B.  This memory advantage of undesirable group B behaviors 
was assumed the key factor causing the negative group impressions of the minority group B.  
The distinctiveness-based explanation has gained quite a lot of empirical support (for extensive 
reviews see Hamilton & Sherman, 1989; Mullen & Johnson, 1990) that was corroborated by 
recent studies in which higher recall for distinct undesirable minority group was documented 
(Hamilton, et al., 1985; McConnell et al., 1994; Stroessner et al., 1992).  Despite the popularity 
and empirical support of the distinctiveness account, however, alternative approaches to illusory 
correlation have been put forward.   

According to exemplar models of Smith (1991) and Fiedler (1996), aggregation of more 
information reduces unsystematic error and so leads to perceptions that are more accurate. As a 
consequence, for majority group A that contains a large number of behaviors, the difference 
between desirable and undesirable behaviors is more accurately perceived than for minority 
group B, where there are less behaviors.  Based on these differences, exemplar models predict an 
illusory correlation bias, that is, more favorable liking of the majority group.  Unlike the 
distinctiveness account, these models posit that unequal frequencies are responsible for the 
effect, not selective memory.  Similarly, the tensor-product model (Kashima et al., 2000) 
proposes that the encoding and aggregation of unequal frequencies by means of the Hebbian 
learning algorithm drives the illusion.  Thus, Kashima et al. (2000) emphasize encoding rather 
than retrieval as the basis of the illusion.  However, the increased recall for infrequent and 
undesirable behaviors noted earlier (Hamilton, et al., 1985; Klauer & Meiser, 2000; McConnel et 
al., 1994; Stroessner et al., 1992) is currently problematic for both the exemplar and tensor-
product account, as they do not address this memory advantage. 

To resolve the discrepancy between increased evaluation and decreased memory, 
alternative models have been put forward (e.g., Garcia-Marques & Hamilton, 1996) that 
emphasize a dual-retrieval process in which likeability and frequency estimates depend on the 
spontaneous availability or ease of retrieval of the episodic items, while free recall depends on an 
exhaustive search guided by the number and direction of the links between episodic nodes.  
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However, such models are strongly limited by the fact that they do not account for the 
development of group impressions. 

Recurrent Account.  Like the tensor-product model, our connectionist account also 
assumes that illusory correlation is created by differences in sample sizes that affect encoding 
rather than by memory retrieval differences between behaviors.  Because of the acquisition 
property of the delta algorithm, the prevalence of desirable (relative to undesirable) behavior is 
more clearly encoded in the evaluative connections for the majority group, so that perceivers 
have a more positive impression of the majority group compared to the minority group.  In 
addition, increased memory for undesirable minority behaviors is driven by the competition 
property of the delta algorithm as described earlier.   

Table 2 represents a simplified simulated learning history of a typical illusory correlation 
experiment as conducted by McConnell et al. (1994, experiment 2).   Each line in the top panel 
of Table 2 represents a pattern of external activation at a trial that corresponds to a statement 
presented to a participant.  The first two cells represent the group label present in each statement, 
the next two cells denote the valence of the statement, and the last cells represent episodic nodes 
reflecting the behavioral information presented 2.   

In the simulation, to measure the traditional evaluative judgments on the groups (i.e., 
likability ratings, frequency estimations and group assignments), the group nodes were turned on 
and the resulting activation of the evaluative nodes was read off (denoted by ?, see bottom panel 
of Table 2).  As noted earlier, no additional external activation was provided to the evaluative 
nodes (or any other “measurement” node) because null activation is a neutral resting activation 
state that allows an unbiased assessment of the evaluative activation generated directly or 
indirectly by the group nodes.  In particular, we tested the resulting differential activation from 
the desirable and undesirable node. Although it is also possible that the evaluative nodes are first 
primed and that this activation then travels to the group nodes, this has little effect on the 
network’s predictions.  The reason is that the sample size effect that drives the illusion is largely 
symmetric over opposing directions of the evaluative connections. 

As discussed earlier, episodic memory can be measured by a group assignment task, 
preferably by measuring latencies that avoid contamination by guessing strategies or response 
biases that are driven by evaluative memory.  In a group assignment task, behaviors are 
presented and participants have to indicate as fast as possible by which group member they were 
performed.  To reflect this measure, each episodic node from different sets of behaviors (A+, A-, 
B+, B-) was activated one at a time (see bottom panel of Table 2).  This episodic activation 
spreads to the group nodes and so determines response times.  This testing procedure is based on 
the assumption that awareness of group membership depends on the crossing of a minimal 
activation threshold (Cleeremans & Jiménez, 2002).  By assuming that the time to spread the 
activation through the network is proportional to the strength of the connection weights, stronger 
episodic→group connections will lead to higher group activations and faster crossing of the 
awareness threshold for group membership 3.   

Results.  The 18 “statements” listed in Table 2 were processed by the network for 50 
“participants” with different random orders.  Figure 5 depicts the mean test activation for all 
simulated dependent measures, together with the observed likeability and reaction time data 
from McConnell et al. (1994, exp. 2).   The top panel of the figure shows the results of the 
simulation of the evaluative measures, together with the likeability ratings from McConnell et al. 
(1994, exp. 2).  The simulation shows that the majority group A received higher evaluative 
activations than the minority group B, F(1, 49) = 39.05, p<.001, mirroring the same pattern of 
the observed data (the perfect fit is exceptional and simply due to the rescaling of the test 
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activation of the network to the observed data that consists here only of two data points). 
The bottom panel depicts the results of the memory simulation together with the observed 

assignment latencies of McConnell et al. (1994, exp. 2).  Although the observed differences 
between B+ and B- are somewhat underestimated, as predicted, the competition property 
resulted in stronger episodic connections for minority behaviors, F(1, 49) = 425.44, p<.001, and 
undesirable behaviors, F(1, 49) = 264.28, p<.001.  These two main effects indicate that it is not 
the combination of negative and minority behaviors (i.e., B-) that might drive the illusion as the 
distinctiveness account would predict, but rather two independent effects of increased memory 
stemming from two minority categories (behaviors from group B and negative behaviors).  As 
noted earlier, these results also distinguish the present network from alternative exemplar-based 
and tensor-product models that cannot account for the increased memory for minority groups and 
undesirable behaviors.   
Simulation 2: Expectancy-based Illusory Correlation 

Although the differential sample size paradigm of Hamilton and Gifford (1976) 
represents a very dramatic demonstration of illusory correlation despite the lack of an actual 
relationship, very often group stereotypes are created as a consequence of existing relationships 
between attributes and a group.  Once such group conceptions are formed, however, these beliefs 
will bias judgments based on newly acquired information, even if that new information does not 
contain an actual relationship.  Thus, already established stereotypes may produce illusory 
correlations through the expectations that are associated with a group.  Therefore, this type of 
illusory correlation is termed expectancy-based, in contrast to the Hamilton and Gifford (1976) 
paradigm that we refer to as size-based. 

In an illustration of this expectancy-based illusory correlation, Hamilton and Rose (1980, 
exp. 1) presented their participants with a series of statements, each of which described a person 
as a member of an occupational group such as accountants and doctors.  In addition, each 
member was described by two trait-implying adjectives, some of which were stereotypically 
associated with the group while others were not.  For instance, the traits perfectionist and serious 
were stereotypical of accountants, and the traits wealthy and attractive were stereotypical of 
doctors.  All these trait adjectives were presented in descriptions of all occupational groups, so 
that there was no relationship between occupational group and any particular attribute.  
Moreover, there were always two members associated with each set of two adjectives, so that 
sample size was kept constant.   Nevertheless, when asked to indicate "how many times each of 
these adjectives described each occupational group" (p. 835), participants overestimated the 
frequency of traits that were stereotypical of a group.  For instance, they estimated the frequency 
of perfectionist and serious accountants to be on average 2.7 (while the actual number was 2).  In 
contrast, the frequency of doctors having these traits was estimated to be 2 (which was the actual 
number).   

This finding cannot be explained by differences in sample size in the information set.  
Apparently, preexisting expectancies about these occupational groups had biased the frequency 
estimates of co-occurrence.  Subsequent studies have replicated these findings (Kim & Baron, 
1988; Slusher & Anderson, 1987; Spears, Eiser & van der Pligt, 1987).    

Several explanations have been put forward to account for expectancy-based illusory 
correlation, including facilitated encoding of stereotypical traits or biases at retrieval.  We 
propose a connectionist explanation that builds on the suggestion by Hamilton and Rose (1980) 
that "an associative basis for an illusory correlation would exist whenever one's previous 
experiences had resulted in a perceived relationship between two stimulus variables.  The 
perceiver would then have an expectation that the two variables are related" (p. 833).  
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Specifically, we assume that the bias results from previous experiences with co-occurences of 
stereotypical traits with an occupational group, and so creates pre-existing stereotypical beliefs 
that are encoded in stronger weights connecting the stereotypical traits with the group.  
Consequently, when novel information is presented, the new weight changes resulting from this 
information are "added" on these prior weights, leading to a stereotypical weight advantage.  
These stronger weights for stereotypical traits produce the illusory correlation.  More generally, 
the integration of old and new information in a connectionist model by adding weight changes, 
explains how expectancy-driven biases are created.   

We used the same model architecture as depicted in Figure 2 for size-based illusory 
correlation, with the exception that trait nodes replace the desirability nodes.  However, the 
present simulation is driven by another property of the delta algorithm, the modification of 
weights derived from old and new information.  Specifically, during a pre-experimental phase, 
the model builds up an association or expectancy about typical traits of each occupational group 
by presenting 5 trials in which stereotypical traits co-occur with their occupational group 
(without any episodic information on specific trait adjectives, as this information is most 
probably lost by the time the experiments starts).  Next, during the experimental phase, 
information is presented that was either consistent or inconsistent with the stereotype, leading to 
a zero correlation overall.  At the end of learning, to simulate frequency estimates which reflect 
"how many times each of these adjectives described each occupational group" (p. 835), each 
group is primed and the resulting activation of each trait node is read off (the reverse direction of 
testing from trait to group nodes works equally well).  Because we simulated single traits 
(without the presence of opposing trait), simulation of the frequency measure was tested by the 
resulting activation of a single trait only (instead of the usual differential activation). 

Results.  Like the previous simulation, the network processed all "trait adjectives" for 50 
"participants" with different random orders.  The mean test activations for the simulated 
frequency estimates are depicted in Figure 6, together with the observed means for two 
occupational groups from the first experiment of Hamilton and Rose (1980).  As can be seen, the 
simulation replicates the basic finding that stereotypical traits are overestimated in frequency in 
comparison with non-stereotypical traits.  A within-subjects ANOVA revealed that, like in the 
original study of Hamilton and Rose (1980), the interaction between Group (accountants versus 
doctors) and Typicality (typical of accountant versus doctor) reached significance, F(1, 49) =  
5554.86, p<.001.   

Group Differentiation 
Several biases and stereotypes in group judgments such as illusory correlation emerge 

from categorizing people or objects in different groups.  A factor that exacerbates the creation of 
stereotypes is accentuation, or the tendency to exaggerate differences on a feature that 
determines group categories (Tajfel, 1969).   For instance, differences between skin colors are 
exaggerated between blacks and whites, but are seen as more similar among people belonging to 
the same racial group.  In a classic study, Tajfel and Wilkes (1963) reported that when short and 
long lines were systematically associated with different categories, the perceived difference 
between the short and the long lines became more pronounced while similarities of the items 
within each category were increased (but see Corneille, Klein, Lambert & Judd, 2001). Such 
accentuation leads to less individuation and hence more stereotypical beliefs about social 
categories.    

Early theories remained vague about the psychological process underlying the 
accentuation effect.  For instance, Tajfel and Wilkes (1963) suggested that the main drive behind 
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the effect is a desire to maximize predictability.  Cognitive explanations have also been offered: 
Exemplar theories (Fiedler, 1996; Krueger & Clement, 1994) assume that in a correlated 
condition, attention to the group label of an exemplar leads to the recruitment from memory of 
more exemplars from the same group, which are then aggregated into a composite evaluation 
that gives more weight to exemplars of the same group than from other groups.  This increases 
the perceived similarity within groups and difference between groups.  The tensor-product model 
of Kashima et al. (2000) proposes a similar account.  Because of the correlation between 
exemplars and the category, all exemplars of the same category share a common group label, and 
so become more similar to each other and more different from other groups.  In sum, both the 
exemplar and tensor-product model offer an account of the accentuation effect in terms of the 
sample size of the group category.  

Like the exemplar and tensor-product theories, our recurrent network also offers a sample 
size account.  The idea is that accentuation is produced by the group→attribute connections.  
Because a correlated condition implies a greater sample size of the co-occurrence of a group and 
attribute nodes, based on the acquisition property, stronger group→attribute connections will 
develop.  For example, if eight pro-gay articles are all correlated with one newspaper, strong 
associations will develop between the newspaper source and this attitude position.  In contrast, 
when four pro-gay articles are correlated with one newspaper and another four to another 
newspaper, the connections of the each of the newspaper sources with the attitude position will 
be much weaker.   

For the group→attribute connections to have any effect on judgment, we assume that 
when perceivers judge an exemplar, not only the episodic trace but also the newspaper source is 
activated to some degree.  As noted earlier, this assumption was also made by previous exemplar 
and tensor-product theories.  Moreover, recent findings corroborate the idea that accentuation is 
more likely to emerge when the task is sufficiently complex, suggesting that especially under 
such conditions participants additionally rely on categorical (i.e., source) information (Corneille 
et al., 2001; Lambert, Klein & Azzi, 2002).  Because of the stronger group→attribute 
connections in the correlated condition, this leads to accentuation of differences with the other 
group that would not occur if group labels were not correlated.  For example, because the 
connection between a newspaper source and the pro-gay attitude in the correlated condition is 
stronger, activating this newspaper node will result in higher activation of the pro-gay attitude 
node (and almost no effect on the anti-gay node as this newspaper was obviously not correlated 
with anti-gay articles), leading to increased pro-gay ratings or accentuation.  In contrast, because 
this connection is weaker in the uncorrelated condition, activating the newspaper node will result 
in relatively weaker activation on the pro-gay attitude node, leading to less pro-gay ratings and 
loss of accentuation.  The reasoning is similar for anti-gay articles and the anti-gay attitude node. 
Novel Prediction and Initial Empirical Support  

The present account makes a novel prediction that earlier exemplar models (Fiedler, 
1996) or the tensor-product model (Kashima et al., 2000) do not make.  Given that the effect of 
acquisition is largely symmetric over the evaluative connections, not only the group→attribute 
connections should be weaker in the uncorrelated condition than in the correlated condition as 
described above, but also the attribute→group connections.  By the competition property, this 
should lead to less discounting of the episodic→group connections (just as it was the case for 
minority groups in illusory correlation).  Hence, our recurrent model predicts that the 
episodic→group connections should be stronger in the uncorrelated than in the correlated 
condition, leading to better recognition (assignment of source labels).   
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To verify this prediction, Vanhoomissen, De Haen and Van Overwalle (2001) explored 
the effect of classification on accentuation of attitudes.  Participants were presented with 
statements reflecting favorable versus unfavorable attitudes towards homosexuality, that came 
ostensibly from two newspapers (cf. Eiser, 1971).  In a correlated condition, the favorable 
statements were consistently attributed to one paper and the unfavorable statements to another 
paper.  In contrast, in an uncorrelated condition, statements were attributed equally often to each 
newspaper.  After reading the statements, the participants were requested to rate all the 
statements on an 11-point scale ranging from very negative to very positive.  In line with the 
accentuation prediction, the difference between favorable and unfavorable statements was 
accentuated in the correlated condition as compared to the uncorrelated condition.  

In addition, a newspaper assignment task was included.  Participants read the original 
statements as well as novel distracter statements (foils) that contained the same material, but 
differed in their evaluative meaning (i.e., switched from favorable to unfavorable and vice 
versa), and they had to indicate from which newspaper the statements came or whether it was not 
presented earlier.  The rationale behind the foils was that this would allow unconfounding 
episodic memory from guessing on the basis of evaluative memory.  If the participants were 
(mis)led by the evaluative meaning of the statements, we would find worsened recognition 
performance on the foils, in that they would not be sufficiently rejected.  However, if the 
participants were led by their episodic memory of the statements, they should show improved 
recognition performance on the foils, that is, they should reject them more often.   

Our novel recurrent prediction for the recognition task was better (episodic) memory of 
the foils in the uncorrelated condition than in the correlated condition.  Consistent with this 
prediction, in the recognition task, participants more often rejected distracter foils in the 
uncorrelated condition than in the correlated condition.  This suggests that, compared to the 
correlated condition, these participants were less often misguided by the evaluative implication 
of the foils and used their episodic memory for making correct recognition judgments.  
Conversely, as one would expect, participants in the correlated condition more often accepted 
the original items, indicating again that they were (in this condition) correctly guided by the 
evaluative implication of these statements.   
Simulation 3: Accentuation 

A recurrent implementation of Vanhoomissen et al.'s (2001) accentuation and assignment 
findings is given in Table 3.  We used the same semi-localist encoding of attribute (attitudes) and 
episodic (articles) information as before.  Again, we simulated 50 "participants" with different 
random orders.  To measure accentuation, participants were requested to give an estimate of the 
attitude position of each stimulus (e.g., how much pro- or anti-gay each statement was).  Hence, 
in the network, we tested for accentuation by cuing each episodic node representing an article as 
well as its associated newspaper node.  (To unconfound source from favorability across the two 
correlation conditions, we activated only four favorable and four unfavorable articles that 
consistently came from the same newspaper in the two correlation conditions).  The degree to 
which this activation spreads to the attitude nodes determines the perceived attitude strength of 
the articles (see bottom panel in Table 3).  The best fit with the observed data from 
Vanhoomissen et al. (2001) was obtained when the newspaper nodes were activated only for .15 
rather than the default value (suggesting that belongingness to the newspaper was recruited from 
memory not to its full degree; the same .15 activation value provided the best fit in simulations 
of a similar study by Eiser, 1971).   

In addition, we measured rejection of the foils in the newspaper assignment task.  We 
assumed that this rejection would follow as a function of the conflicting group activations 
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associated with (a) the behavior described in the foils and (b) the reversed attitude positions.  
Therefore, we first tested recognition of the foils, by measuring how participants "falsely" 
recognized the foils as belonging to the original group.  Specifically, we activated the foils by 
priming each episodic statement together with the reversed attitude position, and read off the 
resulting activation from the newspaper group nodes (see last two rows in the bottom panel of 
Table 3).  Next, we measured the conflict with the group activation arising from the reversed 
attitude position.  To accomplish this, we did the same test as before except that we only primed 
the reversed attitude positions and then subtracted the resulting group activation from that 
obtained for the foils.  This difference score reflects the experienced conflict arising from 
episodic and reversed attitude information. The greater the conflict, the more likely the foil will 
be recognized and rejected.    

Results.  Figure 7 shows the simulation results of 50 randomized "participants".  As can 
be seen on the top panel of the figure, the simulation demonstrates a clear accentuation effect in 
that the perceived attitude positions were more extreme in the correlated condition compared to 
the uncorrelated condition, and the expected interaction was significant, F (1, 98) = 121.46, 
p<.001.  In addition, the bottom panel shows that our novel memory prediction was also 
supported as episodic memory was higher in the uncorrelated condition than in the correlated 
condition, F (1, 98) = 438.83, p<.001.   

This demonstrates that our recurrent network can model accentuation and the associated 
effect of enhanced memory for uncorrelated attributes.  We argue that the network's ability to 
reproduce the accentuation effect is due to sample size sensitivity of the acquisition property, 
while enhanced recognition (i.e., assignment) is due to the competition property.  Other theories 
such as the exemplar-based model of Fiedler (1996) and the tensor-product model by Kashima et 
al. (2000) make the same accentuation prediction, but are silent with respect to enhanced 
recognition.   

Stereotype Change 
So far, we have seen how cognitive processes in humans — as modeled by a recurrent 

network — may shape distorted impressions about groups.  The important question then is how 
might we be able to get rid of these biased impressions?  Three tactics for providing stereotype-
inconsistent information have been proposed in the literature to counter biased group perceptions 
(Weber & Crocker, 1983; for an overview, see Hewstone, 1994): 

According to the conversion model, extreme group members have an especially strong 
impact on perceptions of a group as a whole, so that disconfirming behavior of these members is 
especially likely to change group stereotypes.  However, this model has received little empirical 
support.  More evidence was found for the bookkeeping model, which predicts a gradual 
modification of stereotypes by the additive influence of each piece of disconfirming information.  
Thus, for instance, more frequent disconfirming information will elicit more changes (Weber & 
Crocker, 1983).  This prediction is in line with the recurrent model, as the acquisition property 
also predicts that more evidence leads to more extreme judgments (see also e.g. the sample size 
effects on illusory correlation and accentuation, discussed earlier).   

Perhaps the subtyping model has inspired the most promising tactic.  This model predicts 
that extreme group members will be subtyped into subcategories and separated from the rest of 
the group.  This insulates the group from dissenting members, so that the content of the existing 
group stereotype is preserved.  Hence, contrary to the conversion model, this model predicts that 
the best tactic to change group stereotypes is to distribute disconfirming information among as 
many group members as possible, so as to avoid subtyping of extreme disconfirmers.  Empirical 
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evidence has generally supported this prediction (Hewstone, Macrae, Griffiths & Milne, 1994; 
Johnston & Hewstone, 1992; Weber & Crocker, 1983).   

For instance, Johnston and Hewstone (1992, exp. 1) provided stereotype-inconsistent 
information on occupational groups that was either dispersed across many members or 
concentrated within a few members.  When participants were asked how characteristic several 
stereotype-consistent and inconsistent traits were of the group in general, they showed a strong 
increase of stereotype-inconsistent traits in the dispersed condition.  Frequency estimates of each 
type of information showed the same pattern, that is, higher estimates of inconsistent information 
in the dispersed condition.   When asked to rate the typicality of the confirmers and 
disconfirmers in each group, it was found that the disconfirmers were seen as much less typical 
in the concentrated condition.  This suggests that, as predicted by the subtyping model, 
disconfirmers were probably subcategorized more in the concentrated condition than in the 
dispersed condition.   

Can the recurrent model reproduce these changes?  It can, by simulating subtyping 
through the property of competition.  We again assume a semi-localist representation in which 
not only the trait description is encoded in a stereotype-consistent or inconsistent node, but also 
the person to whom the trait is attributed.  When stereotype-inconsistent information is 
concentrated in a few members, this implies that after repeated presentation, the exemplar nodes 
representing these disconfirming members develop their own strong connection with the 
inconsistent node.  (This is less the case for confirming members, because their 
exemplar→consistent connections are blocked by the strong group→consistent connection.)  
These strong exemplar→inconsistent connections compete with the group→inconsistent 
connections, resulting in a discounting of this latter connection.   Psychologically, this leads to a 
decreased impact of inconsistent information on the group as a whole.  In addition, because the 
disconfirming exemplar nodes develop stronger connections with the inconsistent node as noted 
above, this results in a greater impact of the few disconfirming members on inconsistency 
ratings, resulting in these members being recognized as more inconsistent compared to the 
majority (i.e., subtyping).   

In contrast, when the stereotype-inconsistent information is dispersed across members, 
these exemplar nodes do not develop strong connections with the inconsistent node, so that no 
competition arises with the connections linking the group with the inconsistent traits.  Hence, no 
discounting of the inconsistent information occurs and no subtyping appears.  In sum, the 
connection linking the group with the inconsistent node is more discounted by disconfirming 
members in the concentrated condition than in the dispersed condition, leading to a conservation 
of stereotypical perceptions of the group as a whole.  In addition, the stronger connections of 
disconfirming members with the inconsistent node in the concentrated condition results in more 
subtyping of disconfirming members away from the rest of the group. 
Simulation 4: Dispersed versus Concentrated Stereotype-inconsistent Information 

Table 4 lists a recurrent implementation of Johnston and Hewstone's study (1992, exp. 1).  
As can be seen, the network architecture consists of a group node, two trait nodes reflecting 
stereotype-consistent and inconsistent traits, and several exemplar nodes reflecting individual 
members.   The representation of stereotype-consistent and inconsistent traits as two unitary 
nodes is similar to the representation in the illusory correlation network (Simulation 1) of 
behaviors in desirable and undesirable nodes.  In contrast to the earlier simulations, however, the 
exemplar nodes only represent members, and not their behaviors (which were not simulated).  To 
provide the network with prior expectancies on stereotypical beliefs of the group, we provided 
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10 trials of stereotypical traits in a pre-experimental phase.  Next, in the concentrated condition, 
all disconfirming information was concentrated in the last two group members, whereas in the 
dispersed condition, disconfirming information appeared in all members except the first two.  
The overall amount of inconsistent information was identical (i.e., 12) in the two conditions. 

Again, we simulated "50 participants" with different random orders.  To measure 
stereotypical beliefs, participants are typically requested to rate to what extent some stereotype-
consistent and inconsistent traits describe the group (Johnston & Hewstone, 1992; Johnston, 
Hewstone, Pendry & Frankish, 1994; Weber & Crocker, 1983).  In the network, this was tested 
by cuing the group node and reading off the resulting activation on the consistent or inconsistent 
node.  We assume that frequency estimates are based on a similar testing procedure (see also 
illusory correlation, discussed earlier).  To measure subtyping, Park, Wolsko and Judd (2001) 
demonstrated that one of the more valid measures was to request the perceived typicality of 
confirming and disconfirming group members.  In the network, this was tested by activating the 
two members that were either confirmers or disconfirmers in both conditions, and reading off the 
resulting trait activation (bottom panel in Table 4).   

Results.  Figure 8 shows the simulation results of 50 randomized "participants" on the 
trait ratings (top panel) and the typicality ratings (bottom panel).  As can be seen in the top 
panel, the simulation demonstrates no considerable difference for consistent traits and, more 
importantly, a substantial effect of discounting of inconsistent traits in the concentrated condition 
as opposed to the dispersed condition.  That is, the inconsistencies were less strongly associated 
with the group in the concentrated condition than in the dispersed condition, as in Johnston and 
Hewstone's (1992) study.  A between-subjects ANOVA confirmed that the difference between 
the two conditions was significant for inconsistent traits, F (1, 98) = 26.29, p<.001, but not for 
the consistent traits, F (1,98) < 1, ns.  In addition, the bottom panel shows lower typicality 
ratings for disconfirmers in the concentrated than in the dispersed condition (and, as one would 
expect, almost no differences for confirmers).  Again, this difference was significant, F (1, 98) = 
1572.17, p<.001.  This suggests that disconfirmers in the concentrated condition are more easily 
subtyped away from the overall group stereotype.   

This simulation demonstrates that a recurrent network can model subtyping.  The 
network's ability to reproduce this effect is due to the property of competition, which allows 
discounting of inconsistent information concentrated in a few disconfirmers.  To be precise, 
disconfirmers are not discounted, but rather their implications for the whole group are.  Other 
theories such as the exemplar-based model by Fiedler (1996) and the tensor-product model by 
Kashima et al. (2000) do not posses this property, and hence cannot make this prediction except 
by adding auxiliary assumptions.  For instance, Kashima et al. (2000) assumed that the amount 
of stereotype change is mediated by the extent to which inconsistent group members are 
individuated away from the group's resting state (p. 931), a process that was added to the model 
to incorporate individuation in social judgments.   In the recurrent model, such additional 
individuation process was not necessary, because the results came out naturally from the 
competition property of the delta algorithm.   

Very recently, Queller and Smith (2002) proposed another recurrent connectionist model 
to model subtyping processes.  Although many specifications and parameters of their model 
differ from our network (i.e., distributed representation, symmetric weights, contrastive Hebbian 
learning algorithm), the basic architecture and processing mechanisms are very similar.  
However, a more important difference is that Queller and Smith (2002) focused on the 
distribution of counterstereotypic information among behaviors rather than persons.  That is, 
their simulations do not reflect whether discrepancies are concentrated among a few members or 
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dispersed among most, but instead reflect a difference between moderate and extreme 
disconfirming members, differing only in the number of counterstereotypic behaviors.  This 
variation adequately reflects their own experiment with human subjects (experiment 3; see also 
Weber & Crocker, 1983, experiment 2), and certainly has merit because it points to other 
mechanisms underlying subtyping.   

Based on their simulations, Queller and Smith (2002) concluded that earlier explanations 
of subtyping are not important.  However, it is invalid to generalize these conclusions to the 
more typical case of subtyping when inconsistencies are concentrated within a few members.  
Instead, as we claimed earlier, our simulations confirm that in order to change stereotypes of a 
group, it is essential that discrepant members are still seen as a member of the group, so that the 
link between group membership and counterstereotypic attributes is not weakened.  It is 
interesting to note that in spite of these differences, our network can reproduce Queller and 
Smith's (2002) simulation showing that subtyping is reduced when counterstereotypic 
information is presented throughout with stereotypic information (e.g., when learning about a 
novel unknown group), instead of after an initial stereotypic phase (e.g., when unlearning 
stereotypes of a known group for which one has already developed strong stereotypes). 
Moderating Factors 

The present network can simulate other findings in the literature that examined the 
effects of several moderating variables on subtyping: 

• Sample Size.  Weber and Crocker (1983, exp. 1 & 2) reported more stereotype change in 
the dispersed condition when more inconsistent information was provided.  The model 
explains this finding by sample size differences.  A growing sample size leads to more 
inconsistency information being incorporated in the group schema for the dispersed 
condition, but being discounted and subtyped in the concentrated condition.   This can be 
simulated in the network by increasing the number of inconsistent trials (e.g., by 
doubling their frequency). 

• Individual Members.  Gurwitz and Dodge (1977) reported that, in contrast to group 
judgments, estimates of individual members were seen as less stereotypical in the 
concentrated than in the dispersed condition.   However, Weber and Crocker (1983) did 
not replicate this finding as they found the same pattern of results for individual members 
as for the whole group.  In line with their finding, our simulation also predicts the same 
overall pattern for individual group members as for group judgments (by placing 1s on 
the member nodes instead of on the group node, see first two lines in the bottom panel of 
Table 4).   

• Expectancy.  Johnston et al. (1994, exp. 3) documented more stereotypical ratings when 
stereotypical beliefs about groups were made explicit (high expectancy) than when they 
were not made explicit (low expectancy).  In addition, in what may appear a ceiling 
effect, she also found less change when expectancy was high rather than low.  To 
reproduce Johnston et al.'s (1994) findings, low expectancy can be simulated in the 
recurrent network by reducing the pre-experimental trials (e.g., 2) in comparison with the 
high expectancy condition (e.g., 10). 

Perceived Group Variability 
Thus far, we discussed how categorization between groups may distort how we perceive 

the central tendency of a group attribute (e.g., likeability, attitude, stereotype).  However, the 
perceived homogeneity or variability of people is also strongly affected by group categorization.  
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On the basis of available evidence, Dijksterhuis and van Knippenberg (1999) concluded that 
"variability judgments are quite accurate (in the sense that they reflect the actual stimulus 
variation quite well) and are being updated continuously" (p. 529).  This is consistent with a 
connectionist approach in which group characteristics such as variability are updated on line.  
The concept of group variability is important, because high variability implies inconsistencies in 
the relationship between a group and some attribute, and this may help to dilute or change 
undesired group stereotypes.   However, in contrast to Dijksterhuis and van Knippenberg's 
(1999) claim, research has also documented a number of shortcomings and biases in perceived 
group variability.  Before we turn to these biases, we first briefly discuss how variability is 
measured in prior research and modeled in our network. 
Simulation of Group Variability 

A crucial question is how group variability is measured.  Research addressing this issue 
has used a plethora of measures.  Park and Judd (1990) analyzed these different measures and 
found that two independent constructs account for perceived variability.  The first construct can 
be conceived as the dispersion of group members around the mean of one attribute, while the 
second construct reflects the degree to which the group as a whole is seen stereotypically. We 
focus here on the first construct, involving measures of perceived dispersion.  Park and Judd 
(1990) reported that the perceived range measure was the most valid of group variability.  Other 
measures inspired by an exemplar approach (Linville, Fischer & Salovey, 1989) known as 
"perceived variability", "probability of differentiation", or direct ratings of perceived similarity 
seemed less valid.    

In a recurrent network, variability can be simulated by an approximation of the range 
measure.  In this measure, participants are given a bipolar rating scale spanning the low to high 
ends of the attribute and asked to indicate where the most extreme (opposite) members would 
fall (Simon & Brown, 1987).   To answer this question, we suggest that participants consider the 
group and estimate to what extent this group implicates each opposing attribute.  This is 
simulated during testing by priming the group node and reading off the resulting activation on 
the attribute nodes, just like in a central tendency measure.  However, to measure the distance or 
range between the attributes, these two resulting activations are then summed, rather than 
subtracted as in a central tendency measure.  (The reverse direction of testing by which first the 
two opposing attributes are primed and then the activation of the group node is read off gives 
very similar results) 4. 

We chose the implementation of the range measure for several reasons.  First, it is the 
most valid measure of group variability (Park & Judd, 1990) and it reflects actual judgments by 
participants (of range) rather than experimenter-based calculations (of variance).  Second, it is 
cognitively least demanding because it makes use of information that is already available in 
memory under the form of group→attribute connections, and is thus more likely recruited 
spontaneously when judging group variability.  Third, it is consistent with the finding (Park & 
Hastie, 1987) that estimates of variance are constructed and stored on-line rather than from 
retrieved exemplars, as the group→attribute connections on which our range measure is based 
are developed during learning (using the acquisition property).   

To illustrate our implementation of variability as range measure, we simulated an 
exemplary case.  In this simulation, we wanted to demonstrate that variability is sensitive  to 
sample size.  Therefore, variability was created by taking for each block of four trials, three 
group members that possessed the high end of an attribute and only one member that possessed 
the low end.  According to the incremental acquisition property of the delta learning algorithm, 
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given its greater sample size, asymptote should be reached more quickly for the high end of the 
attribute than for the low end.  To demonstrate this, we measured the results separately for the 
high and low extreme of the attribute.  A direct measure of variability can be obtained by 
summing the two extremes of the attribute.     

The results are depicted in Figure 9.  As expected, the central tendency of the high 
extreme of the attribute approached asymptote much more quickly than the low extreme.  This is 
due to sample size differences, as there are three times more members placed on the high 
extreme than on the low extreme.  However, as more information is provided, the high and low 
extreme are more spread apart, resulting in more variability.  This illustration suggests that the 
variability measure is susceptible to sample size.  That is, when little information is available on 
group members, the variability of the group is perceived as low.  The more information is 
available, the more the group is seen as heterogeneous until a maximum variability is attained 
that depends on the spread between the central tendencies of both extremes.   
Simulation 5: Outgroup and Ingroup Homogeneity 

In group perception, there is a pervasive tendency to perceive an outgroup as less 
variable than an ingroup, a bias known as the outgroup homogeneity effect (Linville, Fisher & 
Salovey, 1989; Messick & Mackie, 1989).  Research revealed that outgroup homogeneity is 
related to the fact that perceivers are more familiar with the ingroup and therefore form a more 
differentiated impression on the ingroup compared to an outgroup (Linville, Fisher & Salovey, 
1989).  This explanation is also supported by the finding that ingroup heterogeneity is larger for 
real and enduring groups where everyone knows each other very well, than for artificial and 
laboratory-created groups (Mullen and Hu, 1989).  In line with this explanation, many 
researchers provided an exemplar-based account of this effect (Fiedler, 1996; Fiedler, 
Kemmelmeier & Freytag, 1999; Hamilton & Trollier, 1986; Linville, Fisher & Salovey, 1989; 
Linville & Fisher, 1993; Park & Judd, 1990).  Because perceivers have a richer knowledge base 
of the ingroup, they tend to recruit more exemplar information from memory about the ingroup 
than the outgroup, leading to more differentiated ingroup judgments.   

Our connectionist approach makes a similar prediction as the exemplar approach.  
Because of the more extensive contact with one's ingroup, perceivers sample more information 
on the ingroup, leading to more differentiated views of the ingroup.  However, contrary to 
exemplar theories, the connectionist approach assumes that the effect of sample size occurs at 
encoding rather than retrieval.  

Clear support for the sample size account of outgroup homogeneity comes from the 
finding that the bias can be reversed when the ingroup is not a majority.  Under these conditions, 
the variability of the ingroup is perceived as much smaller than that of the outgroup (Simon & 
Brown, 1987; Simon & Pettigrew, 1990; Simon & Hamilton, 1994; see for an overview Mullen 
& Hu, 1989).   In a well-known experiment by Simon and Brown (1987, exp. 1), children were 
arbitrarily assigned to one of two groups (blue or green) depending on their capacity to correctly 
categorize blue or green colors.  Then they were given information on the number of children in 
each group, indicating that the ingroup was either a minority, a majority or equal in number to 
the outgroup.  Finally, they were asked to estimate the two scale values that would bracket the 
values of all individuals in each group (i.e., range measure) in their ability to perceive blue and 
green colors.  The results demonstrated that ingroup variability was highest when the ingroup 
was not a minority (either a majority or equal), and outgroup variability was highest when the 
ingroup was a minority.  This finding was reproduced in the next simulation. 

A simplified simulation of the Simon and Brown's (1987, exp. 1) experiment is listed in 
Table 5.  The network consists of an ingroup and an outgroup node, two nodes reflecting the 
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high and low extremes of the attribute (e.g., good or bad in perceiving blue) and several episodic 
nodes.  As can be seen, some variability in the group was introduced by varying the degree to 
which members had one of the attributes, that is, by varying the attribute node activation 
between 0 and +1, including intermediate values of 0.5 and 0.8.   Importantly, to reflect our 
assumption that perceivers typically have more information on the ingroup than on the outgroup, 
the ingroup was described by 8 behaviors and the outgroup by 4 behaviors.  In contrast, to 
simulate ingroup homogeneity due to the ingroup being a minority, we simply reversed the group 
labels so that the ingroup  had 4 behaviors and the outgroup 8 behaviors.  Perceived group range 
was tested by activating the group node and reading off the (summed) activation of the high and 
low attributes, as explained earlier. 

Results.  The network was run with 50 "participants" with a different random order.  As 
can be seen in Figure 10, the simulation produced a larger variability for the ingroup compared 
to the outgroup when more information on the ingroup is available (non-minority), thus 
successfully replicating the outgroup homogeneity effect.  In contrast, when the ingroup was a 
minority, the effect was reversed just as in Simon and Brown (1987, exp. 1).  An ANOVA with 
Ingroup Size as a between-subjects factor and Group (ingroup versus outgroup) as a within-
subjects factor confirmed that the interaction was significant, F (1, 98) = 2110.31, p <.001.  

Fit and Model Comparisons 
A summary of the simulations that we have reported together with the major property 

responsible for generating the group biases can be found in Table 1.  All simulations replicated 
the empirical data reasonably well.  This can also be verified in Table 6 where the correlations 
between simulated and observed data are listed.  However, it is possible that this fit is due to 
some procedural choices of the simulations rather than conceptual validity.  To demonstrate that 
changes in these choices generally do not invalidate our simulations, we explore a number of 
issues, including the localist versus distributed encoding of concepts, and the specific recurrent 
network used versus a feedforward network.  In addition, we will also briefly discuss major 
differences with other relevant models. 
Distributed Coding 

The first issue is whether the nodes in the auto-associative architecture encode localist or 
distributed features.  Localist features reflect “symbolic” pieces of information, that is, each node 
represents a concrete concept.  In contrast, in a distributed encoding, a concept is represented by 
a pattern of activation across an array of nodes, none of which reflect a symbolic concept but 
rather some sub-symbolic micro-feature of it (Thorpe, 1994).  Moreover, distributed coding 
usually implies an overlap of the concepts’ representations (i.e. an overlap of pattern activations 
coding for different concepts).  Although we used a localist encoding scheme to facilitate our 
introduction to the most important connectionist processing mechanisms underlying group 
biases, we admit that localist encoding is far from realistic.  Unlike distributed coding, it implies 
that each concept is stored in a single processing unit and, except for explicit differing levels of 
activation, is always perceived in the same manner without noise.  This may limit the model's 
capacity to simulate properties like pattern completion, generalization, and graceful degradation. 

For instance, in the semi-localist encoding of our simulations the implied attributes in the 
statements were directly coded as given, such as whether the behavior was desirable or 
undesirable, whether the attitude was favorable or unfavorable, and so on.  However, participants 
were not literally told that the statements had these attributes.  Therefore, this material is more 
realistically represented by a distributed encoding scheme, where attribute information is 
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embedded in a pattern of noisy activations that the recurrent network must abstract from these 
patterns, just like real participants must do.  Given the advantages of distributed coding, is it 
possible to replicate our localist simulations with a distributed representation?   

To address this question, we ran all simulations with a distributed encoding scheme in 
which each concept was represented by five nodes that each reflects some micro-feature of the 
concept.  We maintained the same level of overlap between concepts that was already introduced 
in the semi-localist encoding, that is, the overlap consisted of the attribute nodes shared by the 
exemplars.  Although it would perhaps be more realistic to add even more overlap between 
concepts, this was not done here because that would require ad-hoc assumptions on how much 
additional differential pairwise overlap there should be between different concepts.  We also 
added random noise to the activation of theses nodes to simulate the imperfect conditions of 
perception (see Table 6 for details).  All simulations were run with 50 "participants" with 
different distributed representations and random noise for each participant.  As can be seen, all 
distributed simulations attained a good fit to the data and, in all cases, the relevant pattern of 
results from the localist simulations was reproduced.  These findings suggest that the underlying 
principles and mechanisms that we put forward as being responsible for the major simulation 
results can be obtained to the same degree not only in the more contrived context of a localist 
encoding, but also in a more realistic context of a distributed encoding.   
Feedforward Model 

We claimed earlier that the connections between, attributes, exemplars and group nodes 
were presumably most responsible for replicating the phenomena of interest.  This claim can be 
partly tested by using a feedforward network model, in which only the feedforward connections 
from attributes and exemplars to the group play a role (i.e., the upward connections in Figure 2).  
However, this leaves out the important lateral connections between attribute and episodic nodes, 
such as the ones involved in the attitude ratings of accentuation (between attitude positions and 
exemplary statements; Simulation 3) and the typicality ratings of stereotype change (between 
traits and specific group members; Simulation 4).  Thus, except for these two latter cases, we 
expect a feedforward network to do about equally well as the auto-associative network.  To 
explore this, we ran all simulations with a feedforward pattern associator (McClelland & 
Rumelhart, 1988) that consists only of feedforward connections (with additional backward 
spreading of activation from the group node during testing if necessary; see Van Overwalle, 
1998).  As can be seen in Table 6, for all simulations except those mentioned above, a 
feedforward architecture did almost equally well as the original simulations.  This confirms that 
feedforward connections are crucial to reproduce many phenomena in group bias.  Nevertheless, 
it is necessary to incorporate lateral connections of a recurrent network to explain all findings of 
interest.   
Non-linear Recurrent Model 

We also claimed earlier that a recurrent model with a linear updating activation function 
and a single internal updating cycle (for collecting the internal activation from related nodes) 
was sufficient for reproducing the group biases.  This contrasts with other researchers who used 
a non-linear activation updating function and more internal cycles (McClelland & Rumelhart, 
1986; Smith & DeCoster, 1998; Read & Montoya, 1999).  Cycling in a recurrent network has 
some advantages.  For instance, it would allow measuring response latencies in an alternative 
manner by the number of cycles needed to converge on a stable response.  (Recall that we simply 
assumed that the strength of the connection is proportional to the time to spread the activation).  
Are such activation specifications necessary?  To answer this question, we ran all our 



Recurrent Model of Group Biases 28 

simulations with a non-linear activation function and 9 internal cycles (or 10 cycles in total) 5.  
Our model specifications were identical to those of Read and Montoya (1999; see also 
McClelland & Rumelhart, 1988, p. 168—169).   

As can be seen from Table 6, although the non-linear model yielded an adequate fit, most 
simulations did not improve substantially the fit compared to the original simulations.  This 
suggests that the present linear activation update algorithm with a single internal cycle is 
sufficient for simulating many phenomena in group judgments.  This should not come as a 
surprise.  In recurrent simulations of other issues, such as the formation of semantic concepts, 
multiple internal cycles were useful to perform "cleanup" in the network so that the weights 
between, for instance, a perceptual and conceptual level of representation were forced to 
eventually settle into representations that had pre-established conceptual meaning (McLeod, 
Plunkett, & Rolls, 1998).  Such a distinction between perceptual and conceptual levels was not 
made here, and, as a result, multiple internal cycles seem unnecessary.  Nevertheless, non-linear 
recurrent activation made it possible to simulate accentuation without providing external 
activation to the source nodes.  Whether doing away with this external activation might better 
reflect real psychological processes is unclear, because research has shown that accentuation 
does not always occur, and depends on reliance to source categories when the task is ambiguous 
(Corneille et al., 2001; Lambert, Klein & Azzi, 2002).   

Perhaps more importantly, the non-linear activation algorithm tends to abolish the effects 
of competition in the memory and latency measures (Simulations 1 & 3).  The reason is that the 
non-linear updating algorithm forces the activations automatically to the +1 and -1 default levels.  
Hence, if two features are activated together and overpredict a category, then the overly high 
output activation of the category tends to restore to the normal +1 ceiling level.  This reduces 
discounting of the connections with the features.   
Exemplar and Tensor-Product Models 

As mentioned in the introduction, there are a number of differences between the present 
recurrent network and exemplar (Fiedler, 1996; Fiedler, Kemmelmeier & Freytag, 1999; Smith, 
1991) and tensor-product (Kashima et al., 2000) models.  These differences allow the recurrent 
model to explain more biases in a more parsimonious manner with less assumptions 6.  We 
discuss these differences in function of the properties that create the biases in the recurrent 
model: 

• Acquisition.  Exemplar (Fiedler, 1996; Smith, 1991) and tensor-product (Kashima et al., 
2000) models explain many group biases by aggregation over samples of different sizes 
as does our connectionist approach.  Consequently, these models can explain biases such 
as illusory correlation, accentuation, and group homogeneity (Simulations 1, 3 & 5).  
However, in exemplar models, sample size differences appear only when noise in 
perception and encoding is assumed, while this assumption is unnecessary in our and 
Kashima et al.'s (2000) connectionist approach.  The reason is that aggregation in a 
connectionist network is performed during encoding by a learning algorithm that is in 
itself sensitive to sample size.  However, these differences are minor because noise and 
information loss seem quite plausible, also from a neuropsychological perspective (and 
they were also used in our distributed simulations). 

• Competition.  Perhaps the most important limitation of exemplar and tensor-product 
models is that the competition property is absent.  The reason is that aggregation in these 
models is unbounded and has no asymptote.  Multiple inputs do not compete against each 
other for weight but add to the aggregated output in equal amounts.  Although these 
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models often use some sort of a normalization function that limits the overall activation 
(Fiedler, Kemmelmeier & Freytag, 1999, p. 12; Kashima et al., 2000, p. 918), as we 
understand it, this function has a global effect that does not cause competition between 
the summed activation received from multiple inputs like in the delta error-reducing 
algorithm.  Consequently, these models cannot explain enhanced memory for minority 
behaviors (in illusory correlation) or for uncorrelated conditions (in accentuation), or the 
effect of dispersed versus concentrated distribution in stereotype change (Simulations 1, 
3 & 4).  These biases were not discussed in the exemplar models of Fiedler (1996; 
Fiedler, Kemmelmeier & Freytag, 1999) and Smith (1991; Smith & Zárate, 1992).  We 
see no immediate remedy for the lack of competition in exemplar models.  In the tensor-
product model, these biases were explained by individuation processes that require 
additional elaboration and controlled processing.  As stated by Kashima et al. (2000), 
"the individuation process involved in stereotype change and group differentiation was 
explained in terms of the construction of a person representation.  Some mechanism is 
needed to control…the construction process for a person representation" (p. 935).  In 
contrast, our model assumes that these effects are a natural consequence of the 
competition property of the delta learning algorithm without any need for a control 
mechanism.  The tensor-product model can avoid such controlled processes by adopting 
an error-reducing learning algorithm such as the delta algorithm.   

• Group Variation.  All previous approaches modeled mostly the central tendency of the 
attribute (e.g., liking) in group perception, and did not address variability in stereotyping, 
with the exception of Fiedler, Kemmelmeier and Freytag (1999).  In this approach, 
variability was measured by cuing memory with a gradually degraded pattern of 
activation reflecting the ideal attribute features, to instantiate the different scale points 
spanning the high to low ends of the attribute (Fiedler, Kemmelmeier & Freytag, 1999, p. 
15).   In our approach, group variation was based on the range measure and modeled by 
adding the aggregates of the two opposite attributes of the groups (rather than 
differentiating between them like in central tendency measures).  Both approaches are 
able to model ingroup-outgroup homogeneity (Simulation 5).  However, our approach 
seems preferable because it appears simpler and more direct by using existing memory 
traces and because it is based on the more reliable range measure (Park & Judd, 1990). 
In summary, the present model seems to be better equipped to deal with a number of 

important issues in group judgments.  However, this does not deny the merits of earlier 
alternative models.  In particular, Fiedler's (1996) exemplar model has great historical and 
conceptual value, as it was the first to point out that simple aggregation processes could explain 
most basic effects of group biases.  It was also an important inspiration in developing our 
connectionist network model.  In addition, these models, and particularly the tensor-product 
model (Kashima et al., 2000), could be more adequate on other issues or simulations for which 
they were originally designed. 

General Discussion 
The simulations in this article illustrate that a recurrent connectionist model is able to 

account for biases and shortcomings in judgments about groups under diverse conditions.  The 
perspective presented here offers a novel view on how perceivers process social information, by 
describing how knowledge structures are learned through the development of associations 
between social concepts.  This clearly distinguishes it from earlier associationist approaches that 
used static networks (with non-adjustable links) to represent logical relationships or constraints 
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between concepts (Kunda & Thagard, 1996; Read & Marcus-Newhall, 1993; Read & Miller, 
1998; Shultz & Lepper, 1996).  An important advantage of the dynamic and adaptive nature of 
the present recurrent network compared to these previous models as well as other connectionist 
models like the tensor-product model (Kashima et al., 2000) is its computational power.  This 
power comes from the delta learning algorithm that generates a number of important emergent 
properties responsible for a wide range of group biases (see Table 1).   

The acquisition property accounted for sample size effects in (the evaluative bias of) 
illusory correlation, accentuation of group differences and group homogeneity.  The competition 
property accounted for decreased accessibility and lower recall of frequent events in illusory 
correlation and correlated exemplars in accentuation, and the greater discounting of inconsistent 
information concentrated in a few group members.  Our emphasis on these sometimes neglected 
properties of the delta algorithm distinguished the present approach from other implementations 
of the auto-associator (McClelland & Rumelhart, 1988; Smith & DeCoster, 1998) that used 
properties related to distributed representation (e.g. pattern completion, generalization) to 
explore cognition.  It is also different from other distributed connectionist models of group 
processes (Kashima, Woolcock & Kashima, 2000) that use the Hebbian learning rule that is 
unable to reproduce the competition property.   

We also presented unique predictions by the recurrent model on illusory correlation and 
accentuation.  Some of these predictions received already some initial evidence.  Van Rooy 
(2001) demonstrated in a series of experiments that the typical illusory correlation in likability 
ratings and other measures of group evaluation are exacerbated given an increasing smaller  
sample size, and more importantly, that this effect occurs even in the absence of undesirable 
minority behaviors (see also Shavitt et al., 1999).  This poses clear problems for competing 
models of illusory correlation such as the distinctiveness account that situate the origin of 
illusory correlation at an enhanced memory of these infrequent undesirable behaviors (Hamilton 
& Gifford, 1976; McConnell et al., 1994).  Other novel findings demonstrated that memory is 
enhanced for undesirable behaviors (Van Rooy, 2001) as well as for behaviors that are 
uncorrelated with a group attribute (Vanhoomissen, De Haen & Van Overwalle, 2001).  These 
results are problematic for exemplar-based approaches (Fiedler 1991, 1996; Fiedler et al., 1993, 
Fiedler, Kemmelmeier & Freytag, 1999; Smith, 1991) that claim that impaired — rather than 
increased — information aggregation of rare events is the key factor of illusory correlation and 
other group biases. 

By bringing together biases from traditionally different fields of group research, the 
presented connectionist approach can contribute to a more parsimonious theory of biases in 
judgments in several ways.  First, simply integrating these findings in this manner, invites for 
looking at possible further parallels between them.  Second, a connectionist approach makes 
predictions at a more precise level of detail than these previous approaches.  Third, Van 
Overwalle and colleagues (Van Overwalle & Labiouse, 2002; Van Overwalle, Siebler & 
Labiouse, 2002) — using the same network model — demonstrated that this approach was also 
able to account for many phenomena in social cognition, including categorization, person 
impression, assimilation, generalization and contrast, causal attribution, and attitude formation 
(see also Read & Montoya, 1999; Smith & DeCoster, 1998).  These authors also reported that 
the recurrent model with delta algorithm integrates earlier algebraic theories of impression 
formation (Anderson, 1981), causal attribution (Cheng & Novick, 1992) and attitude formation 
(Ajzen, 1991).   In addition, our recurrent network parallels basic associative learning principles 
applied in a growing tradition of studies using associationist theories to human learning (for 
reviews, see Shanks, 1995; Van Overwalle & Van Rooy, 1998).  The revival of associative 
learning models is largely due to the development of models using error-correcting learning 
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mechanisms such as the delta algorithm, which has been used widely in the connectionist 
literature (McClelland & Rumelhart, 1986).  In sum, the present connectionist approach places 
group biases in the wider perspective of the larger field of learning and cognition.    

Connectionist models paint a different picture of information processing compared to 
many earlier models in cognition.   They describe the ability of humans to dynamically adjust 
associations between concepts (groups, attitudes, behaviors …) in a variety of settings (e.g. 
social, personal).  In particular, they assume that automatic and local updating algorithms update 
these associations, requiring little conscious effort or awareness and without the necessary 
control of a supervisory device such a central executive.  Hence, the connectionist approach 
provides an answer as to how we are able to form quick impressions of social agents effortless in 
the rush of everyday life (Bargh, 1996).  This is in line with research on stereotyping that shows 
that prejudiced responses often occur on implicit measures that participants have limited 
conscious control over (Greenwald & Banaji, 1995; Whitney, Davis & Waring, 1994).  This 
distinguishes the present recurrent approach also from the tensor-product model of Kashima et 
al. (2000) that, as the authors admitted themselves, “cannot do away with a control mechanism 
[to explain]...the individuation process involved in stereotype change and group differentiation” 
(p. 935).  In our model, it is assumed that some control could occur, for instance, at the time the 
information is integrated to produce an explicit answer or judgment.   

In addition, it is important to stress that the connectionist learning process on groups is 
not inherently biased. Many earlier theories of cognition suggested that to cope with the strong 
demands of the environment, human perceivers resort to biased processes including heuristics 
(Tversky & Kahneman, 1974), selective attention (Hamilton, 1981), over-generalizations (Tajfel 
& Wilkes, 1963) and so on.  In contrast, within the current framework, this learning process is 
seen as essentially unbiased.  For reasons of evolutionary survival, humans should be capable at 
detecting at least simple relationships between features in their environment (Wasserman, Elek, 
Chatlosh & Baker, 1993).  Biases arise mainly because of lack or abundance of evidence (e.g. 
sample size effect), competition between different types of (evaluative versus episodic) 
information, or instructions and motivational factors that direct the perceiver's attention toward 
or away from some particular information. 
Limitations and Directions for Future Research 

While we believe we have shown that a connectionist framework can potentially provide 
a parsimonious account of a number of disparate phenomena in group judgment, we are not 
suggesting that this is the only valid means of modeling cognitive phenomena. On the contrary, 
we defend a multiple-view position in which connectionism would play a key role but would co-
exist alongside other viewpoints. We think that a strict neurological reductionism is untenable, 
especially in personality and social psychology, where it is difficult to see how one could 
develop a connectionist model of high-level abstract concepts such as existing personality 
differences, motivation, love, and violence, which obviously remain far beyond the current scope 
of connectionist modeling. 

The strong overlap in the basic architecture and learning algorithm of the present 
recurrent model of group biases with similar models of social cognition in general (Read & 
Montoya, 1999; Smith & DeCoster, 1998; Van Overwalle & Siebler, 2002; Van Overwalle et al., 
2002) opens a lot of interesting avenues for future research.  One such topic might be the 
differences between group and person perception, which is now a topic of increasing interest 
(e.g., Hamilton & Sherman, 1996; Welbourne, 1999).  Within the recurrent framework, group 
and person perception are based on the same learning process during which perceivers form on-
line connections between features (traits, characteristics) and targets (individuals, groups).  We 
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suggest that differences between group and person perception arise because information 
concerning individuals (or groups perceived as highly entitative) directs attention to general 
attributes in the information that might reveal the presence of a trait, while less entitative groups 
invite less to search for such consistencies (Hamilton & Sherman, 1996; Wyer & Srull, 1989).  
This increased attention can be implemented in the model by higher activation levels.  Because 
of the raised activation of general regularities such as evaluative meaning and social categories, 
the recurrent model predicts greater speed of learning of general attribute information and, as a 
consequence, more discounting of episodic traces.  This might result, respectively, in weaker 
illusory correlations for individuals than for groups, but in worse memory for specific episodes 
related to individuals than to groups.    

Our model can be very flexibly applied to accommodate other relevant findings.  
Differential attention to some aspects of social information at the expense of other aspects may 
be relevant for other moderating factors of illusory correlation.  For instance, decreased 
activation and a resulting decrease of learning may explain loss of illusory correlation under 
increased or incongruent mood (Mackie et al., 1989; Kim & Baron, 1988; Stroessner, Hamilton 
& Mackie, 1992) or when one's attitude position is already consistent with a majority (Spears, 
van der Pligt & Eiser, 1985).  Conversely, increased activation may explain increases in 
perceived variability of a group, such as when low status members set themselves apart from a 
group (Doosje, Ellemers & Spears, 1995).  However, as noted earlier, the mechanism that 
produces attentional differences is not modeled in the present network, and presumably requires 
the inclusion of additional modules in the network dealing with controlled processes.  Even 
without additional activation assumptions, our model can produce other biases such as Simpson's 
paradox (Fiedler, Walther, Freytag & Stryczek, 2002; Meiser & Hewstone, 2002).   

Another direction for future research might be an integration of research on group 
stereotype change and attitude change.  Typically, these two research topics have been 
conducted almost independently.  Group research has typically emphasized immutable 
characteristics like race and gender or artificial categorizations like groups A & B.  In contrast, 
attitude research often focuses on thematic issues that unite or divide people in real-life groups.  
There is considerable research inspired by dual-process models of attitude formation (Chaiken, 
1980; Petty & Cacioppo, 1986) that describe how the content of arguments as well as other 
contextual information may help to change people's attitudes.  This research, however, has often 
neglected the robust finding in group stereotype research that inconsistent information received 
from a few group members is less effective in changing stereotypical beliefs than that same 
information received from many (Weber & Crocker, 1983).   The present recurrent model was 
capable to model both processes of distributed inconsistent information (Simulation 4) as well as 
attitude change (Van Overwalle, Siebler & Labiouse, 2002).  Perhaps, by taking a similar 
integrative approach, social research might become more successful in changing people's 
stereotypes and attitudes with respect to devaluated minority groups in society. 
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Footnotes

                                                 
1 Because this is a recurrent network, competition may in principle work also on the 

(downward) connections from the group to the attribute and episodic nodes.  For instance, strong 

group→attribute connections may hamper de development of episodic→attribute connections.  

However these latter connections do not play a direct role in our testing procedures.  Other 

sources of competition that involve episodic connections are less likely, because these 

connections are relatively weak and thus may have little influence.   
2  More detailed information on the input coding for all simulations can be obtained from 

the second author. 
3 An alternative procedure is based on the assumption that awareness depends on 

convergence of activation into a stable "attractor" state for the group node (Cleeremans & 

Jiménez, 2002).  The time needed to settle in such an attractor state can be simulated by 

recording the number of activation updating cycles before an attractor is reached (McLeod, 

Plunkett & Rolls, 1998).  As one might expect, it yielded very similar results.  However, in 

keeping with our general simulation methodology in which multiple cycles are avoided, and 

because we are not specifically interested in response times but rather more broadly in any 

measure of episodic memory, we do not report this more elaborated procedure.   
4 Alternatively, in line with an exemplar approach (Linville et al., 1989), one can also 

activate all group members and read off the resulting attribute activation.  This alternative gives 

very similar results, because the number of members who typify an attribute act as proxy for the 

strength of the group node with that attribute.  Hence, the more members there are, the stronger 

the group→attribute connection is, resulting in very similar outcomes.    
5 To make sure that the non-linear activation adjustments settled on a stable state, we also 

conducted simulations with 49 internal cycles (or 50 cycles in total).  The results were very 

similar. 
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6 The recurrent model was also able to reproduce attenuation of recency and response 

dependency in serial position weights as documented by Kashima et al. (2001).  More generally, 

the delta learning algorithm on which the recurrent model was built is well designed to handle 

most basic forms of category learning (e.g., Gluck & Bower, 1986a; Estes et al., 1989).  

However, because of space limitations, these issues and simulations are not discussed further.   
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Table 1:  

Overview of the Simulated Group Biases and the Property creating the Bias 
 

Bias Findings Property 
 

Group Impression Formation 

1. Size-based    
Illusory Correlation 

• A minority group is seen as more negative 
despite the fact that the proportion of 
positive and negative items is identical to a 
majority group. 

• Better memory (assignment latencies) for 
items from a minority category 

Acquisition: greater sample size of opposite 
attributes in majority group   
 
 
Competition: greater sample size of attributes 
in majority group discounts episodic weights
  

2. Expectancy-based 
Illusory Correlation 

More stereotyped judgments despite the lack of 
an actual correlation 

Prior acquisition of greater sample size of 
stereotypical attributes in group caries over 
to present acquisition 
  

 
Group Differentiation 

3. Accentuation • Perceived differences in attributes are 
pronounced if group membership is 
correlated with attribute 

• Better memory (of foils) in uncorrelated 
condition 

Acquisition: greater sample size of correlated 
attribute  
 
Competition: greater sample size of attributes 
in correlated condition discounts episodic 
weights 
 

 
Changing Group Impressions 

4. Stereotype Change Group stereotype changes more if stereotype-
inconsistent information is dispersed across 
many members rather than concentrated in a 
few 

Competition: greater discounting of 
inconsistent attribute concentrated in a few 
members 
 

 
Group Variability 

5. Group Homogeneity  Outgroup is seen as more homogenous; 
however ingroup is seen as more homogenous 
when it is a minority  

Acquisition: greater sample size of ingroup 
attribute, unless ingroup is minority 
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Table 2 

Size-based Illusory Correlation: Learning history (based on McConnell et al., 1994, exp. 2)  
 

   Group     Desirability   Episodic behaviors a  
Trial 

Frequency   
 

A 
 

B 
 

+ 
 
- 

 
A+ 

 
A- 

 
B+ 

 
B- 

 
 Experimental Phase 

 
Group A + 

#8 1 0 1 0 1 0 0 0 
 
Group A - 

#4 1 0 0 1 0 1 0 0 
 
Group B + 

#4 0 1 1 0 0 0 1 0 
 
Group B - 

#2 0 1 0 1 0 0 0 1 
         

 
Test Phase 

 
Evaluation of A 

 1 0 ? -? 0 0 0 0 
Evaluation of B 

 0 1 ? -? 0 0 0 0 
 
Assignment Latencies of A 

 ? 0 0 0 1 0 0 0 
 ? 0 0 0 0 1 0 0 

Assignment Latencies of B 
 0 ? 0 0 0 0 1 0 
 0 ? 0 0 0 0 0 1 
         

Note.  Cell entries denote external node activation. #=Number of times the trial is repeated, +=Desirable, -= 
Undesirable, ?=resulting test activations (without external activations) averaged across each row.  The order of the 
experimental trials was randomized.  
a  Each type of behavior is shown in a separate column that involves multiple episodic nodes of which a different 
one is turned on (activation +1) per trial (e.g., in the 1st trial the 1st episodic node is activated, in the 2nd trial the 2nd 
node and so on). 
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Table 3  
Accentuation: Learning history for correlated and uncorrelated conditions (based on Vanhoomissen et al., 2001) 

 
   Newspaper     Attitude   Statements in Articles a, b 

Trial 
Frequency 

 
A 

 
B 

 
+ 

 
  - 

 
A+(A+) 

 
A+(B+) 

 
B-(A-) 

 
B- (B-) 

 
 Correlated (Uncorrelated) Condition 

 
Favorable Articles  a 

#4 1 (1) 0 (0) 1 0 1 0 0 0 
#4 1 (0) 0 (1) 1 0 0 1 0 0 

 
Unfavorable Articles   

#4 0 (1)  1 (0) 0 1 0 0 1 0 
#4 0 (0) 1 (1) 0 1 0 0 0 1 

  
 

Test Phase 
 
Attitude Position on Favorable Articles from A and Unfavorable Articles from B 

 .15 0 ? -? 1 0 0 0 
 0 .15 ? -? 0 0 0 1 

 
Recognition Memory on Favorable Articles from A and Unfavorable Articles from B 

 ? 0 0 1 1 0 0 0 
 0 ? 1 0 0 0 0 1 
         

Note.  Cell entries denote external node activation. #=Number of times the trial is repeated, +=Favorable, -= 
Unfavorable to a given Attitude Position, ?=resulting test activations (without external activations) averaged across 
each row.  The order of the learning trials was randomized. 
a  Between parentheses are the epsodic node types and activations for the uncorrelated condition. b Each type of 
statement is shown in a separate column that involves multiple episodic nodes of which a different one is turned on 
(activation +1) per trial 
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Table 4 
Dispersed or Concentrated Stereotype-inconsistent Information: Learning history (Johnston & Hewstone, 1990, 
exp. 1) 
 

 
 

 
 

 
Traits

  
    Specific Group Members a 

Trial 
Frequency 

 
Group 

 
Consistent 

 
Inconsist. 

 
Confirmer 

 
Mixed 

   
Disconf. 

 
 Pre-experimental Phase 

 
#10 1 1 0 0 0 0 

 
 

 Concentrated 
Consistent 

#4 1 1 0 1 0 0 
#8 1 1 0 0 1 0 

Inconsistent 
#12 1 0 1 0 0 1 

 
 Dispersed 

Consistent 
#6 1 1 0 1 0 0 
#4 1 1 0 0 1 0 
#2 1 1 0 0 0 1 

Inconsistent 
#8 1 0 1 0 1 0 
#4 1 0 1 0 0 1 

 
 

Test Phase 
 

Consistent and Inconsistent Trait Ratings of Group 
 1 ? 0 0 0 0 
 1 0 ? 0 0 0 

Typicality of Confirmers / Disconfirmers 
 0 ? -? 1 0 0 
 0 ? -? 0 0 1 

 

Note.  Cell entries denote external node activation.  #=Number of times the trial is repeated, Inconsist.= 
Inconsistent, Disconf.=Disconfirmer, ?=resulting test activations (without external activations) averaged across each 
row.  The order of the learning trials was randomized within each condition.   
a  There were 2 group members who always confirmed the stereotype, 2 who always disconfirmed the stereotype 
and  4 who showed mixed traits.  Each member type is shown in a separate column that involves multiple nodes of 
which a different one is turned on (activation +1) per one to six trials (see footnote 2).
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Table 5 
Outgroup and Ingroup Homogeneity: Learning history (based on Simon & Brown, 1987, exp. 1) 
 

 Group Attribute  
Trial 

Frequency 
 

Ingroup 
 

Outgroup 
 

High 
 

Low 
Episodic 

Behaviors a 
 

 Experimental Phase 
 

Ingroup (Outgroup) b 
#2 (1) 1 (0) 0 (1) 1.0 0 1   
#2 (1)  1 (0) 0 (1) 0.8 0 1   
#2 (1) 1 (0) 0 (1) 0.5 0.5 1   
#2 (1) 1 (0) 0 (1) 0 0.8 1   

 
 

Test Phase 
 

Variability as Range 
 1 0 ? ? 0 
 0 1 ? ? 0 
      

Note.  Cell entries denote external node activation.  #=Number of times the trial is repeated, ?=resulting test 
activation (without external activation).   The order of the experimental trials was randomized. 
a Each behavior involves multiple episodic nodes of which a different one is turned on (activation +1) per trial.  
b Between parentheses are the trial frequencies and activations for the outgroup condition. 
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Table 6 

Fit of the Simulations, including Alternative Encoding and Models  
 

 
Nr 

 
Bias 

Empirical 
Measure 

Original 
Simulation 

 
Distributed 

 
Feedforward 

Non-linear 
Recurrent 

 

1 
 

Size-based 
Illusory Correlation 

Likeability a  1.00 1.00 1.00 1.00 

  Assignment RT .94 .88 .88    < 0 x 

2 Expectancy-based  
Illusory Correlation 

Frequency  .97 .95 .97 .96 

3 Accentuation Attitude  1.00 1.00    .76 x .96 

  Memory (Foils) .95 .99 .95    < 0 x 

4 Stereotype Change Trait  .99 .99 .95 .98 

  Typicality  1.00 1.00    < 0 x 1.00 

5 Group Homogeneity Range 1.00 1.00 1.00 1.00 

 
Note.  Cell entries are correlations between mean simulated values (averaged across randomizations) and empirical 
data.  For the distributed encoding, each concept was represented by 5 nodes and an activation pattern drawn from a 
Normal distribution with M = activation of the original simulation & SD = .20 (5 such random pattern were run and 
averaged) and additional noise at each trial drawn from a Normal distribution with M = 0 & SD = .20, and with 
learning rate = .03 (except .05 for simulation 1).  For the Non-linear auto-associative model, the parameters were: E 
= I = Decay = .15 and internal cycles = 9 (McClelland & Rumelhart, 1988) with learning rate =.20.   
a The correlations in this row are trivial as only 2 data points are compared and thus necessarily yield only +1 or -1; 
the correlations in the other rows each involve 4 data points.  x Predicted pattern was not reproduced. 
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Figure Captions 
Figure 1: Architecture of an auto-associative recurrent network. 
Figure 2: Recurrent network for simulations of group bias with two group nodes representing 

groups A and B, two attribute nodes representing the desirability and undesirability of the 
behavior and several episodic nodes each representing the unique meaning of one 
behavioral statement. (Note that not all lateral connections between nodes at the same 
layer are drawn to avoid cluttering the figure, but all are working during the simulations). 

Figure 3: Simulated evaluative strength (Da,b=Difference between desirable and undesirable 
evaluation for group A and B respectively) in an illusory correlation design in which 2 
desirable and 1 undesirable behaviors were alternately presented to the network. 

Figure 4. Graphical illustration of the mechanisms of competition (with A=group A, B=Group 
B, D=desirability, F=frequent behaviors, I=infrequent behaviors).  Filled nodes are 
activated at a single trial, empty nodes are not activated.  Full lines denote strong 
connection weights, broken lines denote moderate weights while dotted lines denote 
weak weights.  

Figure 5. Simulation 1: Size-based Illusory Correlation. Observed data from McConnell, 
Sherman & Hamilton (1994, exp. 2) and simulation results. (Note that in the bottom 
panel, the scale is reversed so that higher values reflect better memory and, consequently, 
slower latencies).  The human data are from Tables 4 and 5 in "Illusory correlation in the 
perception of groups: An extension of the distinctiveness-based account" by A.R. 
McConnell, S.J. Sherman, & D.L. Hamilton, 1994, Journal of Personality and Social 
Psychology, 67, 414—429.  Copyright 1994 by the American Psychological Association.   
Adapted with permission. 

Figure 6. Simulation 2: Expectancy-based Illusory Correlation. Observed data from Hamilton & 
Rose (1980, exp. 1) and simulation results.  The human data are from Table 1 in "Illusory 
correlation and the maintenance of stereotypic beliefs" by D. L. Hamilton & T. L. Rose, 
1980, Journal of Personality and Social Psychology, 39, 832—845. Copyright 1980 by 
the American Psychological Association.   Adapted with permission. 

Figure 7.  Simulation 3: Accentuation. Observed data from Vanhoomissen et al. (2001) and 
simulation results in function of a correlated or uncorrelated condition.   

Figure 8.  Simulation 4: Dispersed versus Concentrated Stereotype-inconsistent Information. 
Observed data from Johnston and Hewstone (1992, exp. 1) and simulation results.  The 
human data are from Table 3 in "Cognitive models of stereotype change: (3) Subtyping 
and the perceived typicality of disconfirming group members" by L. Johnston & M. 
Hewstone, 1992, Journal of Experimental Social Psychology, 28, 360—386. Copyright 
1992 by Academic Press.   Adapted with permission. 

Figure 9.  Simulation of Group Variability in function of the high and low extreme of an 
attribute.  The high attribute is shown on the top half, the low attribute on the bottom 
half.  The activation of the low attribute is reverse scored to visualize that variability is 
measured by range, i.e., the sum of the values obtained for the two opposite attributes.  

Figure 10.  Simulation 5: Simulation of Ingroup-Outgroup homogeneity in function of (non) 
minority status of ingroup. Observed data from Simon & Brown (1987) and simulation 
results.  The human data are from the top panel of Figure 1 in "Perceived homogeneity in 
minority-majority contexts" by B. Simon & R. J. Brown, 1987, Journal of Personality 
and Social Psychology, 53, 703-711. Copyright 1987 by the American Psychological 
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Association.   Adapted with permission. 
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