
 PPAARRSSEERR:: UUsseerr MMaannuuaall
Perruchet, P., & Vinter, A. (1998). PARSER : A model for word segmentation.
Journal of Memory and Language, 39, 246‐263.

This software is composed of 3 files:
- P98pilot6.exe, which is the program the user has to start
 and
- SP98pan2.exe
- Mkcorpus.exe, which are subprograms that are called by the main program.

These files must be imperatively located in the same folder. There is no other requirement for the
installation. However, creating a specific directory for these files may be a good practice. Indeed, the
program creates a few temporary files in this directory. They are normally deleted, but if the program
fails to reach its end for any reasons, some of these files may remain on the hard disk (note that
removing residual temporary files is not necessary: they will be deleted in subsequent simulations).

In principle, Parser is relevant (and hence the program is applicable) to any issue in which a sequential
material needs to be segmented into units that are not given in the sensory input. The primitives may
be, for instance, phonemes, letters, or geometrical figures. However, Parser has been mainly applied to
the issue of discovering the words from a continuous speech flow, with the syllables construed as
processing primitives. For the sake of simplicity, the terminology relevant for the word segmentation
literature will be used here.

FFoorr aa ffiirrsstt aapppprraaiissaall

To have a quick overview of the program, run ‘P98pilot6.exe’, and select ‘generate a corpus’ on the
window below. The next window is designed to enter the materials the program needs to generate a
corpus. Select one of the Ready-to-use examples and the program will fill the form for you. The left-
hand panels comprise the items that will be concatenated to build the corpus with their respective
frequency. The other two panels comprise the items used for the test.

 1

After an example has been selected, the next pop-up window presents the main options. The only
mandatory choice is between ‘Step-by-step’, which provides a detailed analysis on a single run, and
‘normal’. Click on ‘Step-by-step’, then “START”. You first see a summary of the current set-up and
the corpus that the program has generated. The next window is the results window.

The results window comprises two main frames, which shows the results for Steps 1 and 2,
respectively. This mode of presentation is intended to make easier the analysis of the operations
performed by the model on each step. The part of the currently processed corpus is displayed on the
top of the page.

 A detailed comment on how the model works is available on this web site:
http://leadserv.u-bourgogne.fr/LEAD/people/perruchet/soc.html

The two bars in the high-right corner indicate the standard scores of completeness (the proportion of
words that are extracted) and precision (the proportion of actual words among the extracted units),
respectively. The program also returns the number of discovered items belonging to each list (here:
test words and test part-words), and the number of items that have been found but which do not
belong to the list(s). The remaining information (mainly: the content of the Percept Shaper) should be
self-obvious for anyone familiar with the model.

The program automatically stops on the first window, in order to let it up to you how to go through the
next steps. Standard media buttons (except there is no 'rewind' function) allows to go ahead either
step-by-step, or in a running way. Shifting between the two modes is obviously possible. At any
moment, the right-hand frame displays the result of the current step, and the left-hand frame displays a
record of Step N-1 for the sake of comparison.

You may be concerned with the slowness of this analysis. Don’t worry: there is another mode of
functioning, the “Normal” mode. Click on “Back to ‘select option’”, and select now ‘Normal’ instead
of Step-by-step, then validate this choice and the Summary/ Corpus sheet. The final result of the
analysis now appears directly on the right-hand panel of the results window. If you have previously let
the step-by-step analysis running until its end, you may see that the two sets of results are different.
This is because the random seed is set to ‘Time’ as a default. Had the random seed been set to a fixed
value, say 1, the two modes (Step-by-step and Normal) would have returned exactly the same values
(see more on the random seed below).

Besides the advantage of speediness, the Normal mode makes various options available. The most
useful may be the number of runs. Enter a value, say 5, in the “Number of runs” combo box, and let
the results scrolled up on the screen. The left-hand panel of the results window now displays a
summary of the results for the 5 runs. The program is described in more detail below.

 The main structureThe main structure

 2

http://leadserv.u-bourgogne.fr/LEAD/people/perruchet/soc.html

11 -- TThhee ooppeenniinngg wwiinnddooww:: GGeenneerraattee vvss.. LLooaadd aa ccoorrppuuss

You have two main options to enter the data: either you provide the basic material to the program (i.e.,
at a minimum, a list of words and the number of occurrences of each word) via the keyboard (or by
copy/paste from Word or Excel) and the program will generate a corpus, or you load a complete
corpus that you have previously created (with another software) and saved as a text file.

Data coding in Parser: General principles

To process a string of characters, the program needs to know the boundaries of the primitives, i.e., of
the strings of characters that are considered as indivisible units. For instance, if syllables are
considered as primitives for a given analysis, the letters composing a syllable will be ever processed as
a whole. In Parser, a primitive ends with a ‘/’. A primitive may comprise a variable number of
characters.

Generate a corpus

You need to enter the items composing the corpus in the left panel of the window below. Entering test
items (in the two right-hand panels) is optional. Whatever the list, the coding is the same. The items
must be segmented in (indivisible) primitives, which end by '/' (but see the note below) An item may
comprise a variable number of primitives, and a primitive may comprise a variable number of
characters. E.g.: '1/6/3/', 'b/u/p/a/d/a', 'bu/pa/da/..' , 'par/ti/ci/pant/' are legal items.

You also need to enter the number of repetitions of each item. If this number is common to all items,
it suffices to enter the target value at the top of the most left-hand column (clicking on ‘update’ is
optional, but ensure you that the frequencies have been set as you want). More generally, any line left
empty in the frequency column will be recursively completed with the value immediately above. As
you may observe if you scan through the ready-to-use examples, the number of repetitions is constant
in most studies, but it differs in others. When the frequency of the items differ, and no immediate
repetition is allowed, the usual algorithms of randomization provide a flawed outcome (see French &
Perruchet, Behavior Research & Method, 2009). The program uses an algorithm derived from the one
proposed by French & Perruchet, which ensures that each item occurs exactly the number of times that
has been required, with an homogeneous distribution throughout the corpus.

As a default, the words will be concatenated randomly without immediate repetition to form a
continuous corpus. However, it is also possible to authorize immediate repetitions by checking the
appropriate box. As you may observe if you scan through the ready-to-use examples, some studies
prohibited immediate repetitions while other did not. It is also possible to process the corpus as a
succession of separate sentences, hence making language exposure a bit more natural. To do that,
check the box ‘Insert hard boundaries’, and complete the pop-up form with either a fixed value (the
number of words composing a sentence), or a range of values.

 3

In addition, two lists of test items may be entered. The test items must be in the same format as the
language, i.e. written with a '/' after each primitive. The two lists are, by default, labeled 'words' and
'part-words'. However, any other assignment is possible (and the labels can be edited accordingly). For
instance, if you select Giroux & Rey (2009) in the ready-to-use examples, you see that the labels have
been changed, because the crucial comparison here is between words and sublexical units (instead of
part- words). Note that entering non-words (i.e., a sequence of syllables not displayed in the corpus) is
objectless: Parser cannot create non-words. When test list(s) are provided, the program returns various
scores (see below)

The number of items is usually limited, so entering the data via the keyboard should be a manageable
task. However, it may be more convenient to copy/paste the items from a file.

Load a corpus

Although the ‘Generate’ option allows to simulate a large part of the word segmentation literature,
there are also obvious limits. For instance, one may hope to introduce novel words progressively
across training. This kind of manipulations is not possible under the ‘Generate’ mode.

Before selecting the ‘Load a corpus’ option, you have to prepare a text file containing the entire
corpus with another software. The text must be segmented into primitives, which are separated by '/',
as specified above. The program also needs to know if the corpus can be considered as a continuous
sequence of primitives, or if there are hard boundaries. Hard boundaries separate physically

 4

discontinuous utterances – No unit straddling over a hard boundary will be created. In Parser, the hard
boundaries are coded with ‘//’.

Paragraph marks, spaces, and the following punctuation symbols: . , ! and ? can be included for user's
convenience, but they have no function at all: only ‘/’ and ‘//’ are recognized as separators. Any other
character (more precisely: any character the ASCII code is comprised between 34 and 255, with the
exception of the punctuation marks listed above, and, of course, ‘/’) is coded as an element of a
primitive.

For example:

(1) this/is/the/first/sen/tence//this/is/the/se/cond/sen/tence/
(2) this / is / the / first / sen/tence,/

/this / is / the / se/cond / sen/tence/.
and

(3) this/
is/
the/
first/
sen/
tence//
this/
....

are equivalent: in all cases, syllables are primitives and the two sentences are separate utterances.

By contrast, note that

(1) this/
and

(2) This/
are different primitives, because ‘t’ and ‘T’ are coded as different characters. Although this choice
appears to be rather inappropriate in this specific case, lower-case and upper-case letters are
considered as different characters due to their distinctive function in the phonetic code.

After having loaded a file, the user is offered the possibility of entering the words of the language
and/or test words. This information is obviously ignored by the program during the extraction process,
but, if provided, it is exploited for analyzing the results. The procedure is the same as the one
described above (‘Generate a corpus’), except that a few irrelevant options are made inactive.

Note: In many cases, the primitives can be coded with a single letter or digit, and this coding has the
advantage of making processing faster (long primitives slow down the processing). For convenience, a
general convention is that if there is no single slash in a string (e.g., in the whole corpus, or in a test
item), the individual characters composing the string are taken as primitives.
In a nutshell: NO SLASH = SLASHES ANYWHERE
For instance:
(1) abc
(2) a

b
 c
and
(3) a/b/c/
are valid and equivalent entries.
In the corpus, ‘//’ can still be used to indicate hard boundaries.

 5

22 -- SSeelleecctt ooppttiioonnss

After the data have been entered, the next window to appear is represented below. It is recommended
to select first whether you are interested in exploring in detail a single simulation (Step-by-step mode),
or if you intend to perform one or several simulations in a relatively efficient way (Normal mode).
Indeed, this choice determines whether other options are in active or inactive state (many options are
inactive pending you click on ‘Step-by-step’ or ‘Normal’). If you select 'Normal', be sure that the
subprogram 'SP98pan2.exe' is in the same folder as the main program. 'SP98pan2.exe' is MS-DOS
program, which is called by the main program under the ‘Normal’ mode.

Process only a part of the corpus

 (Available only when the corpus has been loaded from a file –The number of repetitions is a
parameter in the ‘Generate’ mode). If you have prepared a file with a long corpus, and that you
wonder about the model’s performance with a smaller corpus, you don’t need to prepare and save a
new file. When the ‘process only a part of the corpus’ box has been checked, you are asked how many
primitives you wish to keep for the next analysis. Learning curves can be drawn in this way..

 6

Chain the simulation with an earlier one

As pointed out below, results can be saved. To start a new simulation in the state reached after a
previous one, it suffices to indicate to the program the file in which the previous results have been
saved, through a standard Windows dialog box. This should be especially useful when the model has
to be exposed to several languages in succession. Let us suppose that you want to introduce new words
progressively during training. You can prepare a complete corpus and load it as a whole, but it is also
possible to create different corpuses with the ‘Generate’ option, and to chain the simulations.

To use this option, the results file must have been left unchanged. More precisely, it is possible to add
information to the initial part of the result file, in which the set-up of the current simulation is reported,
as well as to the final part, which reports a summary of the scores, but strictly no change (including the
addition or removal of simple spaces) is allowed for the results corresponding to each run (i.e., to the
sections reported between two lines composed of “================...”)

Setting the parameters

Parser has been occasionally criticized on the ground that the model includes a large number of
parameters (e.g., Bonatti et al., 2006). This criticism is unwarranted, for at least two reasons. Firstly,
most parameters have a clear psychological meaning, which is certainly not the case of all parameters
in modelisation studies (e.g., the meaning of the momentum in connectionist networks is somewhat
opaque). Secondly, Parser has proven to be remarkably insensitive to parameter manipulations. The
skeptics are invited to run simulations with the Ready-to-use examples provided in the input window.
Anyone can see that Parser performs rather well in all cases. Now, these examples are drawn from
various studies coming from various laboratories, they manipulate several variables (frequency,
transitional probabilities, length of words, etc.), and there is no specific adjustment: the model all
simply processes on-line the material displayed to the human participants (e.g., the length of the
processed corpus is the same). Likewise, no parameter fitting is required. Worthy to note, the
parameters that have been set as a default in the program have not been selected for this specific use:
they are those used in the first paper on the model (Perruchet & Vinter, 1998), and which have been
used in most subsequent papers.

That said, it may be useful to adjust some parameters in some occasions. The program allows to
modify all of them. The most important are the rate of decay and the rate of interference. Two main
guidelines have to be kept in mind when these parameters are modified. First, the rate of forgetting
(decay/interference) needs to be set at an intermediary value. If forgetting is too strong, the program
fails to build any units, hence generating a low score of completeness. If forgetting is too low, the
program stores a very large number of units, hence generating a low score of precision. Usually,
running the step-by-step mode allows to find appropriate values without running complete simulations.
Second, manipulating forgetting through the decay parameter makes the model essentially sensitive to
frequency, while manipulating forgetting through the interference parameter makes the model
essentially sensitive to transitional probability and contingency (for an explanation, see for instance
Perruchet & Pacton, 2006).

The other parameters are displayed in the window below. The number of primitives composing a
single percept may be conceived of as something like a working memory span, and it may make sense
to adjust the values in some studies (e.g. in developmental investigations). The other values defines the
way the weight of the units are incremented. Admittedly, these values are set arbitrarily, but the
problem is more apparent than real. Indeed, what is relevant is the ratio between the increments (due to
the on-line processing of the units) and the decrements (due to forgetting). For the sake of between-
studies comparisons, it is advisable to left these values unchanged, and to manipulate the relevant ratio
by changing what has been coined here as the main parameters, namely the rates of decay and
interference.

 7

 8

IIff yyoouu hhaavvee cchhaannggeedd oonnee oorr sseevveerraall ppaarraammeetteerrss,, iitt iiss ppoossssiibbllee ttoo rreesseett aallll ppaarraammeetteerrss ttoo tthheeiirr ddeeffaauulltt
vvaalluueess bbyy cclliicckkiinngg oonn tthhee aapppprroopprriiaattee bbuuttttoonn.. NNoottee tthhaatt tthhiiss bbuuttttoonn iiss aaccttiivvee oonnllyy iiff oonnee oorr sseevveerraall
ppaarraammeetteerrss hhaavvee bbeeeenn cchhaannggeedd dduurriinngg aa pprriioorr ssiimmuullaattiioonn ((aass aa ccoonnsseeqquueennccee,, sseeeeiinngg tthhee bbuuttttoonn iinnaaccttiivvee
mmeeaannss tthhaatt tthhee ccoonnffiigguurraattiioonn ooff ppaarraammeetteerrss iiss ssttaannddaarrdd))..

 Number of runs

(Available only in the ‘Normal’ mode. Run is set to 1 in the Step-by-step mode).
When the number of runs is >1, the user is asked whether the same corpus must be used for all runs, or
if a new corpus must be used for each run. Indeed, the result from a single simulation may depend to
some extent on some particularities of the specific corpus on which the simulation is performed. For
instance, it is possible that a given word appears more frequently as expected by chance at the
beginning of the corpus. This potential bias, although certainly a very minor source of biases
(especially with long corpuses), can be prevented by asking a new corpus for each simulation.

When the corpus is generated by the program, this option involves no other constraint. Note, however,
that generating a new corpus for each run unavoidably slows down the program. The time required to
generate a corpus depends on the length of the corpus, but also on other conditions. As a rule,
generating a corpus with words of different frequencies without immediate repetition may be very
time-consuming.

When the corpus is loaded from a file, this options implies that the user has prepared a number of
different files at least equal to the number of runs. The name of the first file (the file selected in the
'Load' option) must be suffixed with '1' (e.g., data1.txt), and the subsequent files must be suffixed with
'2', ..., 'n'.

Random seed

There are four main options:

 - Selecting 'Time' uses the computer clock as a seed. This ensures a different randomization in each
case. However, a problem with this option is that it does not allow to reproduce the same set of events.
Reproducing the same set of events may be desirable for various purposes. For instance, if one wishes
to draw learning curves by entering increasingly long corpuses, reproducing the same events across
successive simulations appears appropriate. The next options make it possible.

 - The option 'CurrentRun' uses the number of the current run as the random seed (i.e., 1, 2, ... n, in
succession). If you have selected this option during training, and you are puzzled by the results

reported for, say, Run 7, you can enter '7' as the random seed under the 'Step-by-step' mode to examine
what happens in this particular situation.

 - The option 'CurrentRun + c' is identical, except that a constant is added to the number of the
current run. This allows to obtain several sets of reproducible simulations (but be aware that entering
'3' as a constant, for instance, will generate the same values for the first run as for Run 4 under the
'CurrentRun' option.)

 - Entering a numeric value (which needs to be an integer) allows to generate the same set of values
each time this value will be selected again, but if you intend to reproduce Run 7 after having selected
this option, you need to start again from Run 1. In addition, it is impossible to reproduce the sequence
in the 'Step-by-step' mode, because it is not possible to know the values serving as random seed for
Run 7.

Save the results

(Available only in the ‘Normal’ mode.). When this option has been selected, a complete record of the
session is saved. The saved file includes: (1) the summary file, presented below, which recapitulates
the whole set-up, (2) the complete results for each run and (3) a final table displaying the scores.

 Summary

The 'Summary/ Corpus' window pops up automatically before the analysis begins. It allows to check
that everything has been set as you intended to do. It is possible to add further comments for your
records on the summary form (note that the date of creation is automatically inserted). However,
changing the target values (e.g., the rate of decay) on this form has no other effect than getting you in a
mess! To change anything, click on 'For change'.

 9

If the option 'save the results' has been selected, the content of this form will be copied at the top of
the results file. Note that it is also possible to save the corpus that the program has generated when the
‘Generate a corpus’ option has been selected. The corpus(es) will be saved in a file the name of which
is identical to the results file, with the suffix ‘_corpus’.

The program may fail to generate the corpus. It is not possible, for instance, to generate a language
without immediate repetition comprising four words, a, b, c, and d, the frequency of which is a=10,
b=10, c=10, and d=100 (or any value > 30). Indeed, the frequency of a, b, and c, is too low to avoid
the repetition of d. Of course, the program does not assess the intractability of the problem through
analytical means: it all simply gives up after 100.000 unsuccessful iterations. In this case, a message:
“"Parser fails to built a corpus. Please change the parameters" appears.

 33 -- AAnnaallyyzzee tthhee rreessuullttss

The result window comprises two main frames. Under the 'Step-by-step' mode, the right-hand frame
displays the result of the current step, and the left-hand frame displays the results for Step N-1, hence
allowing analysis of the operations performed by the model on each step.

Under the 'Normal' mode, the right-hand frame displays the final state of the current run, and the left-
hand panel displays a record of the final scores for each run. The content of these frames is reported on
the result file (if the option 'Save the results' has been selected), with the content of the right-hand
frame being recorded in succession for each run (if several runs have been required), and the content
of the last left-hand frame being appended to the file.

 10

The two bars in the high-right corner indicate the scores of completeness (the proportion of words that
are extracted) and precision (the proportion of actual words among the extracted units), respectively.
Note that the scores of completeness and precision are correct only if all the words (and only the
words) of the language have been previously provided. This is obviously the case under the ‘Generate
a corpus’ option, given that the corpus is created on this basis, but under the Load mode, the program
has no means to check that the words have been correctly entered.

If test lists have been provided, the program also returns the number of discovered items belonging to
each list (e.g., test words and test part-words), and the number of items that have been found but which
do not belong to the list(s).

 Appendix: Source of the ‘Ready to use examples’, with a few comments...

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability
statistics by 8-month-old infants. Psychological Science, 9, 321-324.

The first study using a ‘frequency-balanced design’. In a ‘frequency-balanced’ design, some items
are more frequent than other items in the familiarization speech. This allows to have test words
and test part-words of equal frequency, but differing with regard to the transitional probability
between their constituents. Note that the numbers of items that are displayed are those used in
Aslin et al. In fact, the correct values to obtain a genuine frequency-balanced design would be 47
and 88, instead of 45 and 90 (French & Perruchet, BRM 2009).

Giroux, I., & Rey, A. (2009). Lexical and sub-lexical units in speech perception. Cognitive
Science, 33, 260-272.

This study compares the recognition performance of adults for lexical and sublexical units of same length
after hearing 2 or 10 min of an artificial spoken language. The results are consistent with Parser’s
predictions, showing that performance on words is better than performance on part-words only after 10 min.
Note that simulating all the results involve several changes in the provided material: (1) The frequency of
words (145) is for 10 min of exposure. For 2 min, the value needs to be set to 29. (2) The test items are
words and sublexical units, not part-words (see the Appendix A in the paper for details).

Perruchet, P., & Desaulty, S. (2008). A role for backward transitional probabilities in word
segmentation? Memory & Cognition, 36, 1299-1305.

This study shows that adult participants are sensitive to the standard, ‘forward’, transitional
probabilities, but also, more surprisingly, to backward transitional probabilities. Parser predicted
this result, while a SRN is unable to account for it. The provided material is the one used in
Experiment 2, in which the raw frequency is controlled, as in Aslin et al, 1998.

Perruchet, P. & Peereman, R. (2004). The exploitation of distributional information in syllable
processing. Journal of Neurolinguistics, 17, 97-119

The paper reports an experiment collecting judgments of word-likeness as a function of the
relationship between the phonemes composing the rimes (VC) of monosyllabic words. The
contingency between Vs and Cs, as assessed by rphi (the normative measure of contingency) was
the best predictor of children and adult judgments, and the backward transitional probability

 11

(pV/C) made a sizeable contribution. Parser proved to be a better predictor of performance than
an SRN (but better results are obtained if the role of interference in forgetting is increased –e.g.
decay=0.025 and interference=0.025).

Perruchet, P., & Vinter, A. (1998). PARSER : A model for word segmentation. Journal of
Memory and Language, 39, 246-263.

The provided material is the one used in Study 4. Parser turns out to be able to discover a word (‘
bu’) that is a component of larger words (e.g., ‘dutabu’).

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants.
Science, 274, 1926-1928.

One of the two seminal papers that prompted research on statistical learning.

 12

	Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8-month-old infants. Psychological Science, 9, 321-324.
	Perruchet, P., & Desaulty, S. (2008). A role for backward transitional probabilities in word segmentation? Memory & Cognition, 36, 1299-1305.
	This study shows that adult participants are sensitive to the standard, ‘forward’, transitional probabilities, but also, more surprisingly, to backward transitional probabilities. Parser predicted this result, while a SRN is unable to account for it. The provided material is the one used in Experiment 2, in which the raw frequency is controlled, as in Aslin et al, 1998.

	Perruchet, P. & Peereman, R. (2004). The exploitation of distributional information in syllable processing. Journal of Neurolinguistics, 17, 97-119
	Perruchet, P., & Vinter, A. (1998). PARSER : A model for word segmentation. Journal of Memory and Language, 39, 246-263.
	The provided material is the one used in Study 4. Parser turns out to be able to discover a word (‘ bu’) that is a component of larger words (e.g., ‘dutabu’).
	Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926-1928.

