
Real-Time Imaging 8, 105–113 (2002)
doi:10.1006/rtim.2001.0259, available online at http://www.idealibrary.com on
Real-time Sub-pixel Cross Bar Position
Metrology

M
any measurement application fields need to calculate cross bar intersection locations of
horizontal and vertical bars. The system we developed and that we present in this paper
is an embedded system that measures cross bar positions with sub-pixel accuracy on

1024� 1024 pixel images delivered by a camera at a 50MHz data rate in real time. This is done
using an algorithm that looks for intersection areas and then locally calculates two lines
representing horizontal and vertical bars. The two line intersection is considered to be the bar
intersection. To achieve real time, we developed a hybrid architecture in which low level processes
are implemented into FPGAs and others into DSPs. As a result, at the end of the camera scanning
(20ms), all calculations are completed and the results are available.

2002 Published by Elsevier Science Ltd.

D. Rivero
1
, M. Paindavoine

2,* and S. Petit
1

1Thomson Tubes and Displays, Avenue du Général de Gaulle, 21110 Genlis, France.
2Université de Bourgogne, LE2I, Aile des Sciences de l’Ingénieur, 21011 Dijon, France.
Introduction

In several areas, like human movement analysis, or in
our case TV metrology, a cross bar target is displayed
and intersection positions are calculated to obtain
information about human movements or about TV
screen adjustments. This requires highly accurate
measurements and most of the time, high-speed proces-
sing for feedback effect. In our case, this means using
a 1024� 1024 pixel CCD camera with a 50MHz
data rate. Using our system we then reach an accuracy
of 50 mm in a 1m wide screen using a sub-pixel
algorithm.

Research has been carried out on real-time measure-
ment systems as in astronomic applications [1], in object
corner positioning [2] and in human movement analysis
*E-mail: paindav@u-bourgogne.fr

1077-2014/02/$35.00
[3]. These video systems allow validation of the position
measurement algorithm implementation at a maximum
of 10MHz pixel data rate.

In order to process the 1024� 1024 images in real
time, we selected an algorithm which involves as a first
step the object location in the image and as a second step
a two dimensional object position measurement in this
located area.

The location step processes the whole image and is
made using low-level image processing while the second
step is achieved on all the pixels in the located areas.
Thus step comprises centre of mass calculations and
using these results a least mean square line regression is
carried out to represent horizontal and vertical bars.
The intersection of these two lines is considered as being
the bar intersection. Thus, this algorithm requires both
low level and high level processing.
r 2002 Published by Elsevier Science Ltd.

Figure 1. System description.

106 D. RIVERO ETAL.
To process data at a 50MHz data rate, many
approaches have been tested. The first approach often
met consists of using a Digital Signal Processors (DSPs)
board. However, because of speed, this is not easily
possible. The second possibility consists of making all
the calculations on a dedicated board. The solution we
present takes advantages of the two methods and
involves implementing one part of the process on
programmable electronic components (FPGAs) board
and the other one in a DSP board, thereby obtaining an
optimum solution.

The algorithm is presented in the next section. The
third part of this article describes the algorithm
implementation.

Sub-pixel Cross Bar Position Metrology Algorithm

Figure 1 describes the measurement system which uses a
1024� 1024 CCD camera in order to accomplish TV
screen adjustments. This camera delivers two video
outputs working at a data rate of 25MHz each (the pixel
data rate is 50MHz). The images obtained with the
camera have to be processed using a specific algorithm.
The algorithm is composed of two entirely independent
steps:

1. A low precision intersection area location.
2. A local representation of the two intersection bars

using lines with sub-pixel accuracy.

The intersection of the two calculated lines is then
considered to correspond to the bar intersection. Figure
2(c) presents a synopsis of this process. The advantage
of this decomposition is that the sub-pixel method,
requiring a lot of calculations, is not applied to the
entire image but only to areas. As interest area windows
change from one image to another, each position must
be relocated.

Intersection area location

The algorithm consists of sliding a mask to locate
interest areas. Because of the simplicity of the observed
images and because of the speed at which processes have
to be run, only 16 points are tested for each position of
the mask. To meet with real time on an embedded
system, the window jumps eight pixels horizontally and
four pixels vertically between windows tested. This
choice has been validated on various images. This is
possible because of the width of bars and because the
distance between two positions is greater than an
intersection area (more than 32 pixels).

This method gives good results and allows the
detection of all areas when measurement conditions
are well suited.

Lines modelling of bars

Considering, in our case, the TV image size (up to 1m
diagonally), accuracy (50 mm) and camera resolution
(1024� 1024 pixels) a sub-pixel approach is needed.

Many algorithms exist that use a two dimensional
approach but most of them require a very high data rate
and make use of the straight line edge hypothesis. This is
not the case in intersection areas so we do not use them.
Examples of these methods are given by [4–6].

We then use a one dimensional sub-pixel approach
that involves the approximation of bar positions with a
set of points. These points are used for linear regression
modeling of horizontal and vertical bars. This is done
using the least mean square algorithm. The intersections

Figure 2. Example of a mask for detecting intersection pattern.

REAL-TIME SUB-PIXELCROSSBARPOSITIONMETROLOGY 107
of these lines are considered to correspond to bar
intersections as shown on Figures 2(a) and 2(b). The
accuracy of the approximation depends on the precision
obtained when modeling bars using points. A 1D
sub-pixel algorithm [7, 8] comparative study has been
made corresponding to the previously mentioned con-
straints and thus the centre of mass algorithm was
selected.
Algorithm implementation

DSP solution

Implementing the previously described algorithm into a
DSP based architecture is not possible in real time
without using more than six DSPs and an interface
board to store signals from the camera. This develop-

108 D. RIVERO ETAL.
ment is complex and at the end of the camera image
scanning, results may not be available.

We can give centre of mass calculation time measured
as an example. One complete calculation into two DSPs
is achieved in 17.5 ms. In this case, one of the two DSPs
calculates the numerator and the denominator and the
other one calculates the final division in a pipeline mode.
As we need to calculate about 32 centres of mass per
intersection with more than 100 intersections per image,
the maximum time accorded to one calculation is 7.8 ms.
So it is not possible to calculate the centre of mass in two
DSPs in real time F we have to consider more DSPs.
Moreover, regression line calculations and intersection
area location have to be performed and so these
operations require more resources.

For all measurements, the chosen DSPs are Texas
Instruments TMS320C44 [9]. They have been chosen
because they have four communications ports (com-
ports) that permit them to communicate amongst
themselves and externally. They also have an internal
ALU (Arithmetic Logic Unit), able to process a 40-bit
floating point number addition and multiplication in
one cycle with a 60MHz clock. They also incorporate a
DMA (Direct Memory Access) coprocessor independent
of the ALU and numerous buses that make it possible to
access two external memories independently. So when
the DMA coprocessor accesses one of these memories
the ALU can access the other at the same time. These
DSPs also integrate two internal 1 Kword RAMs and a
cache.

After various simulations of possible architectures we
obtained the results presented in Table 1 [10] and in
relation to industrial application, we developed a low
cost hybrid architecture. With regard to Table 1, it
appears that it would be interesting to implement low-
level processing into a dedicated FPGA (Field Pro-
grammable Gate Array) board. This is because of all the
possibilities they now offer. For example, the Xilinx
XC4000 family [11] that we chose for this application
Table 1. Architecture comparison between FPGAs and DSPs so

Process F

Intersection area seek 1 FPGA - 1 RA
Center of mass calculation 2 FPGAs - 2 RA
Line calculations N
incorporates, among other functions, fast integer
arithmetic additions, internal RAMs and ROMs.

Finally, the automatic location of windows including
intersections and centre of mass calculations are
implemented into FPGAs and linear regression calcula-
tion is obtained on DSPs. This last process has been
kept in the DSPs. A lot of resources would be required
for floating point calculations if we tried to implement it
into the FPGAs. Moreover, the low data rate is
compatible with the DSP time calculation in this step.
We now present implementation considerations on
centre of mass calculations using FPGAs, and regression
line implementation using DSPs.

Centre of mass implementation using FPGAs

The general form of centre of mass is

Ck ¼
P31

i¼0 i � pkðiÞP31
i¼0 pkðiÞ

ð1Þ

here Ck is the kth centre of mass calculated and where
the grey level of pixel i is pk(i). This step requires
numerator and denominator calculations before division
calculation. The simplest way to implement this
equation is to realize a recursive calculation as shown
in Figure 3. This needs an 8� 5 multiplier. Many
multipliers have been tested (Wallace tree, carry save
adder multiplier, . . . [12]). Whatever the chosen multi-
plier, limit time calculation on Xilinx XC4000-5 FPGA
is greater than 40 ns (25MHz pixel data rate). To
increase time according to one calculation, we then
process two pixels at a time maintaining the same access
time and the same number of memory components.
Thus, this doubles the time accorded to one calculation
although it increases requested resources.

It appears then that simplifications are possible and
for example when four pixels are processed at the same
time, (1) is transformed into

Ck ¼
Nk

Dk
¼

P7
m¼0

P3
n¼0 ðmþ nÞ:pkðmþ nÞ

P7
m¼0

P3
n¼0 pkðmþ nÞ

: ð2Þ
lutions considering real-time constraint

PGA solution DSP solution

M (640 ns time calculation) 410 DSPs
Ms (1280 ns time calculation) 46 DSPs
ot evaluated 2 DSPs

den12 ... den0

Denominator

ADD 13 bits

iP

Register

num16 ... num0

Numerator

Cp[4:0]

ADD 17 bits

MULT 8×5 bits

Cp[4:0] : values from 00000 to 11111

Figure 3. Numerator and denominator implementation (one
pixel at a time).

REAL-TIME SUB-PIXELCROSSBARPOSITIONMETROLOGY 109
The numerator Nk can then be written

Nk ¼
X7

m¼0

ðm:½pkðmÞ þ pkðmþ 1Þ þ pkðmþ 2Þ þ pkðmþ 3Þ�

þ pkðmþ 1Þ þ 2:pkðmþ 2Þ þ 3:pkðmþ 3ÞÞ: ð3Þ

So,

Nk ¼
X7

m¼0

fm:½pkðmÞ þ pkðmþ 1Þ þ pkðmþ 2Þ

þ pkðmþ 3Þ� þ ½pkðmþ 1Þ þ pkðmþ 3Þ�

þ 2:½pkðmþ 2Þ þ pkðmþ 3Þ�Þg: ð4Þ

This is interesting because the calculation requires a
10� 3 multiplier. Other additions can then be processed
in parallel. This solution is developed in Figure 4. This
operation has been realized making groups of 1, 2, 4 and
8 pixels. Results are presented in Table 2.

It appears that when grouping more than four pixels
at each cycle, the time needed on a Xilinx to process one
cycle is less than the maximum time allowed for this
cycle and so real-time calculation is possible. Grouping
four pixels at each process cycle is the optimal solution
because it allows real-time performance using minimum
resources. So, the adopted solution consists of grouping
4 pixels at each process cycle and as Figure 4 shows,
numerator and denominator calculations are obtained
at the same time.

For time reasons, the division is pipelined with
previous calculations. The time for one division
corresponds to a 32-pixel centre of mass calculation
processed with a 25MHz calculation clock, which
means a time of 1280 ns for each division. For this
implementation, no timing problem has been encoun-
tered and restitution remainder iterative division [12] has
been implemented.

We choose to develop a communication through
DSPs comports because DSPs are made in such a way
that when they wait for data that is not present on the
port, they keep waiting until this data is present. This is
a simple and powerful way we use to synchronize the
DSP with the data that the FPGA sends. This
bidirectional communication has been developed inte-
grating the DSP communication protocol on the FPGA
and is also used to send data from DSPs to FPGAs at
the beginning of the process.

Linear regression implementation on DSPs

Two Texas Instrument TMS320C44 DSPs receive data
in the DMA mode. This is done using the DSP
characteristic that makes it possible to process data
from a memory while storing data in the DMA mode in
the other one. At the end of the reception of all the data
corresponding to an intersection, a software switch is
achieved so that these last data are processed and new
data are stored in the other memory. This allows
computation during the centre of mass reception. When
all centres of mass corresponding to a valid window are
received, calculation on these points begins. This is
possible because reception time is greater than linear
regression calculation time (reception time=time for 32
centre of mass calculations=32� 1280 ns; calculation
time: 36.8 ms). This last time includes line parameter
calculation, communication time to group results in one
DSP and line intersection determination.

For linear regression, the algorithm implemented is
least mean square algorithm. This involves ak and bk
calculations in the equation y(x)=ak+bk.x:

ak ¼
Ak

Dk
¼

SxxSy � SxSxy
SxxS � ðSxÞ

2
ð5Þ

bk ¼
Bk

Dk
¼

SxyS � SxSy
SxxS � ðSxÞ

2
; ð6Þ

where

S ¼
X31

n¼0

1 ¼ 32 ð7aÞ

iP i+1P i+2P i+3P

ADD 17 bits

num16 ... num 0

Numerator

den12 ... den0

Denominator

Register

Cp[2:0]

Cp[2:0] : values from 000 to 111

ADD 13 bitsADD 13 bits MULT 10×3 bits

ADD 9 bits ADD 9 bits

ADD 8 bitsADD 8 bitsADD 8 bits

8

Figure 4. Numerator and denominator implementation (four pixels at a time).

Table

Num

Num
Maxi
Time
Num
Num

*Mea

110 D. RIVERO ETAL.
Sx �
X31

n¼0

i ¼ 496 ð7bÞ

Sxx �
X31

n¼0

i2 ¼ 10416 ð7cÞ

Sy �
X31

n¼0

pkðiÞ ð7dÞ
2. Evolution of time cycle according to the number of pixe

ber of data processed at one cycle 1

ber of cycles for a complete calculation 32
mum time allowed 40 n
needed on a Xilinx to process one cycle* 72.2
ber of function generators used (resources) 301
ber of component input/output needed 28

surements made on a Xilinx XC4013-5 using tool Xdelay.
Sxy �
X31

n¼0

i � pkðiÞ ð7eÞ

The first step calculates Sy, Sxy in the two directions on
two DPSs (DSP1 for horizontal direction and DSP2 for
vertical direction in Figure 5) in the same way. Then
only terms Ak, Bk and Dk are calculated in each direction
and DSP2 sends to DSP1 the Ak, Bk and Dk results.
Then DSP1 calculates X0, Y0, the intersection using the
ls grouped

2 4 8

16 8 4
s 80 ns 160 ns 320 ns
ns 81.6 ns 87 ns 104.7 ns

311 330 389
36 52 84

2 × 25 MHz / pixel

780 kHz / center of mass

Camera
1024 × 1024

Interest areas positions

780 kHz / center of mass

24.4 kHz / line regression

Interest areas

detection

(a) Implemented in Unit 1 (UT1)

Vertical centers of mass calculation

(b) Implemented in Unit 2 (UT2) (c) Implemented in Unit 3 (UT3)

Horizontal centers of mass calculation

Horizontal line regression calculation Vertical line regression calculation

(e) Implemented in DSP 2(d) Implemented in DSP 1

(f) Implemented in DSP 1

Intersections calculations

Intersections positions

Figure 5. Decomposition of the algorithm.

REAL-TIME SUB-PIXELCROSSBARPOSITIONMETROLOGY 111
formula given by (8) and (9).

X0 ¼
x0
d0

¼
Av;kDh;k þ Bv;kAh;k

Dv;kDh;k � Bv;kBh;k
ð8Þ

Y0 ¼
y0
d0

¼
Av;kBh;k þ Dv;kAh;k

Dv;kDh;k � Bv;kBh;k
ð9Þ

here indices w and h correspond to parameters
respectively related to vertical and horizontal lines.

Final architecture and results

The final architecture is shown in Figures 6 and 7 and is
composed of 3 FPGAs and 2 DSPs. The process is
decomposed as shown in Figure 5.

Unit 1 slides a mask through the image data sent by
the camera. When a window is validated, its position is
sent to two FPGAs (units 2 and 3) which compute
centres of mass for vertical and horizontal bars in
pipeline mode so that processes never stop. During these
centre of mass calculations, unit 1 continues sliding the
mask through the image and detecting intersection
windows. All stages are buffered. Centres of mass are
then sent to two DSPs via communication ports, which
calculate the horizontal and vertical linear regression at
the same time as FPGAs continue their calculations.

In Figure 8, an original image to be processed
automatically with our system is given. Figure 9 shows
the areas detected. This figure shows that all areas are
detected in real time (less than 40ms). Several tests have
been carried out using a lot of images and have shown
that all measurements are obtained with an accuracy of
50 mm in a 1m wide screen.

This system (electronic boards in Figures 6 and 7)
remains very general and the use of these technologies
allows us to easily transpose this system to another

R
A

M
 2

R
A

M
 1

R
A

M
 2

DSP 1

R
A

M
 1

Camera

R
A

M
 1

R
A

M
 2

FPGA board

DSP 2

Data bus 2

LUT

Process

Unit 2

Process

Unit 3

Process

Unit 1

(FPGA) (FPGA) (FPGA)

Data bus 1

P.C.

DSP board

Local bus
Link 1 Link 2

Figure 6. Final architecture.

112 D. RIVERO ETAL.
algorithm that keeps the general block structure
presented in Figure 5. It can also be applied to other
patterns.

Conclusion

To increase measurement accuracy in cross bar location,
we use a 1024� 1024 pixel camera at a 50MHz data rate
using a sub-pixel algorithm. This algorithm is well suited
for these applications but requires a high power
Figure 7. Material realization of the architecture.
calculation and is not easily implemented into real-time
applications. To combat these constraints, we realized
an embedded hybrid calculation system. In this
system, low-level step calculations are implemented
into FPGAs and high-level step calculations into DSPs.
This allows us to perform a complete calculation
(about 100 intersections detections, 6400 centres of
mass and 200 least mean square regression line
calculations on 32 points) and to obtain all the results
during the camera scanning (20ms) for a retrospective
action.
Figure 8. Original image.

Figure 9. Processed image.

REAL-TIME SUB-PIXELCROSSBARPOSITIONMETROLOGY 113
References

1. Fidouh, F. (1993) Développement d’un détecteur de
photocentres de táches lumineuses à base de processeurs de
traitement du signal. Applications à l’imagerie astronomique
à haute résolution. PhD Thesis, University of Paris VI,
France.
2. Gaiarsa, A.E. & Capson, D.W. (1994) Real-Time Mea-
surement of Corner Position in Binary Images. IEEE
Trans. on Inst. and Meas. 43: 567–577.

3. Furnee, H. (1990) PRIMAS: real-time image-based mo-
tion measurement system. Image-Based Motion measure-
ment. Proceedings of the SPIE 1356.

4. Marr, D. & Hildreth, E. (1980) Theory of edge detection.
Proc. Roy. Soc. London, Conference on Computing vision.
B207.

5. Tabatabai, A.J. & Mitchell, O.R. (1984) Edge location to
sub-pixel values in digital imagery. IEEE Trans. on Pattern
Analysis and Machine Intel. 6: 188–201.

6. Overrington, I. & Greenway, P. (1987) Practical first-
difference edge detection with sub-pixel accuracy. In: Image
and Vision Computing. Butterworth & Co., volume 5.

7. Kang. J.C. (1993) Sub-pixel Edge Estimation in Machine
Vision. Revue internationale de CFAO et d’infographie 8:
371–385.

8. Seitz, P. (1988) Optical superresolution using solid-state
cameras and digital signal processing. Optical Engineering
27: 535–540.

9. Texas Instruments (1996) TMS320C4x User’s Guide.
Digital Signal Processing Solutions.

10. Rivero, D. (1999) Mesure en temps réel de position à
précision sub-pixel dans une image. PhD Thesis, University
of Burgundy, France.

11. Xilinx (1994) The programmable logic data book.
12. Hennessy, J.L. (1996) Computer Architecture: A Quantita-

tive Approach. Paris: Morgan Kaufmann Publishers Inc.

	Introduction
	Sub-pixel Cross Bar Position Metrology Algorithm
	Figure 1
	Figure 2

	Algorithm implementation
	Table 1
	Figure 3
	Figure 4
	Table 2
	Figure 5
	Figure 6

	Conclusion
	Figure 7
	Figure 8
	Figure 9

	References

