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Analogy-making, whether human or computational,

is typically conceived of as involving a ‘mapping’

between two domains, called the source (or ‘base’)

and the target. Hall [1] lists four abstract processes

that are widely considered to be necessary for

analogical reasoning: 

(1) recognition of a source, given a target 

description;

(2) elaboration and evaluation of the mapping 

between the two;

(3) transfer of information from the source to the 

target;

(4) consolidation (i.e. learning) of the outcome. 

Chalmers, French and Hofstadter suggested that

this basic framework should also include dynamic

representation-building mechanisms and parallel

sub-process interaction [2].

The following (true) example anecdotally

illustrates not only these processes, but also the

ubiquity of analogical processing, even in completely

ordinary situations. In 1973 I was, for the first time

ever, in a European bathroom [target]. This obviously

brought to mind [recognition] an American

bathroom [source] because [elaboration and

evaluation] the European bathroom sink clearly

mapped to an American bathroom sink, the European

bathtub approximately mapped to an American

bathtub (although having a significantly different

shape), the European towel-rack to an American

towel-rack, the European mirror to an American

mirror, and so on. However, one object in the European

bathroom puzzled me. It was made of porcelain, had a

drain, and could be rinsed out with water from two

faucets. I concluded [transfer] that this object must

be a European toilet and acted on my conclusion… 

(I only later discovered what a ‘bidet’was and

realized that European toilets are frequently not in

the bathroom.)

Classes of computational models of analogy-making

Although there are many ways of classifying

analogy-making programs, I have chosen to classify

them into three broad groups based on their

underlying architectures. (For another classification

scheme, see, for example, Ref. [3]). These are:

• ‘symbolic’models, so called because they are largely

part of the symbolic paradigm in AI, in which

symbols, logic, planning, search, and means–ends

analysis, play a predominant role. (See Ref. [1] for

an extensive review of these early models.)

• ‘connectionist’models that adopt, broadly speaking,

the framework of the connectionist networks,

including nodes, weights, spreading activation, 

and so on.

• hybrid models that lie somewhere in between

connectionist and symbolic models.

Symbolic models

The distinction of being the first computer model of

analogy-making probably goes to Reitman’s Argus [4].

The program solved proportional analogies that, by

today’s standards, seem trivial. For example, the

program was given: bear:pig::chair:? and had to pick

an answer from one of four choices: foot, table, coffee,

strawberry. Although the program was simple in the

extreme, its architecture nevertheless included

many far-sighted principles, including the use of a

conceptual network, interactions between the

concept network and the problem to be solved, the

realization of the necessity of automatic

representation-building for the source and target,

and so on.

The best known model from the 1960s was Evans’

ANALOGY [5]. Like Argus, this program was designed to

do proportional analogies of the form A:B::C:? taken

from standardized high-school IQ tests (see Box 1).

All of the objects in the analogies were simple

geometric figures. One important feature of ANALOGY

was that its input was a low-level description of each

figure and, based on this, the program built a high-

level description of the figure. All of the problems

solved by ANALOGY are from the same domain, that is,

both source and target consist of geometric figures.

Also about that time, JCM attempted to put the

computational modeling of analogy-making into a

more cognitively plausible, real-world framework [6].

It did this by incorporating incipient notions of

learning, working memory (WM) and a long-term

memory (LTM), in which were stored

representations of a set of primitive objects,

importance-ranked relations between them, 

events and causal mappings.

A number of models from this early period drew

heavily on formal logic. For example, ZORBA-1 was an

automated theorem prover that solved (target)

problems by finding an analogous (source) problem,

taking its proof and applying it to the target 

problem [7]. Munyer (PhD thesis, University College

of Santa Cruz, 1981) and Greiner [8] also developed
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analogy-making systems based on formal logic.

Munyer’s system, in particular, combined planning,

problem-solving and deductive logic and

implemented a process of gradual ‘convergence’ to a

correct mapping via an interaction between top-down

(logic) and bottom-up, competitive processes.

The first attempt to apply production systems to

computational analogy-making was McDermott’s

ANA [9] a program that did problem-solving in a

micro-world. This program had an LTM knowledge

base (stored as production rules) and a working

memory. ANA progressively built the appropriate

productions needed to solve the target task,

analogous to a source task stored in LTM that it

already knows how to do. It learned by saving the

new productions in LTM.

Carbonell applied means–ends analysis to

analogical retrieval [10]. One key difference with

previous work was that his transformational-

analogy method used weak search methods and

sub-goaling to find ‘solution paths’ to a solution to a

particular target problem. The program had a stored

set of second-order representations of solution paths

for previously solved problems. Means–ends analysis

was then used to discover the source problem that

best corresponded to the target problem. This

transformational-analogy method was later

extended to a more powerful derivational-analogy

method [11,12], which operated on automatically

derived representations and included a peripheral

knowledge base to improve the evaluation of various

parts of the solution path.

Simpson’s MEDIATOR was the earliest application of

case-based reasoning (CBR) to analogy-making [13].

Prodigy/Analogy combined CBR and Carbonell’s

derivational approach to analogy-making [14]. This

architecture was explicitly designed to be scaled up to

larger domains and several empirical results have

shown that, as the number of stored episodes

increased, the integrated learning system was able

to keep search requirements under control.

In the late 1970s, Winston developed the notion of

‘transfer frames’ [15]. Two objects (one source, one

target) were presented to the program as being

similes. Mappings were then made by the program

between the source and target based on the most

salient properties of the source, the prototypicality of

the information in the target, and the instructional

context provided by a tutor. After checking for

inconsistencies with respect to these criteria,

properties were transferred from the source to the

target. This work was extended to a model of

analogical reasoning in which, in order to respond to

a particular query, a rule was extracted from the

source situation based on attributional and

relational information in the source situation [16,17].

This rule, based on consistent relational structure,

was used to answer the target query.

Winston’s work anticipated, in some sense,

Gentner’s Structure Mapping Theory (SMT) [18] 

(and see Box 2). SMT is unquestionably the most

influential work to date on the modeling of analogy-

making and has been applied in a wide range of

contexts, from child development to folk physics. 

SMT explicitly shifts the emphasis in analogy-making

to the structural similarity between the source and

target domains. Two major principles underlie SMT:

(1) the relation-matching principle: good 

analogies are determined by mappings of 

relations and not attributes (originally only 

identical predicates were mapped).

(2) the systematicity principle: mappings of 

‘coherent systems’of relations are preferred 

over mappings of individual relations.

Opinion

ANALOGY, one of the earliest analogy-
making programs [a] attempts to
‘construct a rule which transforms
figure A into figure B, and figure C

into exactly one of the five 
answer figures’ (see Fig. I). The
representation module first analyzes
the input (written as a low-level

description, rather than being the
actual figures) and describes figure
A, for example, as [(inside P2 P3)
(above P1 P3) (above P1 P2)]. Similar
representations are made for figures
B and C and for the five test figures.
Based on these representations, the
program matches the most similar
descriptions in order to discover 
the correct analogy. Notice that the
program has no semantic knowledge
about the figures it manipulates. 
For example, it does not know that
squares and rectangles are generally
closer in people’s minds than, say,
squares and letters.

Reference

a Evans, T. (1968) A program for the

solution of a class of geometric

analogy intelligence test questions.

In Semantic Information Processing,

pp. 271–353, MIT Press

Box 1. Constructing rules
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This structural approach was intended to produce

a domain-independent mapping process.

The Structure Mapping Engine (SME) was the

computational implementation of SMT [19]. More

recent versions of SME have explored the use of

pragmatics, as well as re-representation techniques

that allow related, but not identical, predicates to

match [20]. MAC/FAC, a two-stage analogical

retrieval engine, was later developed as a front-end

to SME [21,22]. The first stage of its retrieval process

consists of a sweep through LTM, retrieving many

potential source episodes based on a superficial

search; the second stage is a detailed, best-match

process designed to select the best matches to the

target. Only then does the structure-mapping 

phase begin. MAGI, another SME-based model, 

detects regularity within a given situation or 

scene by seeking maximally consistent mappings

among its parts [23]. Depending on the nature 

of the mappings found, elements of the scene 

can be categorized as being repetitions, or

symmetrical. This structural notion of 

regularity applies to conceptual, as well as

perceptual, materials.

IAM incrementally maps portions of a base

domain to the source, thereby gradually building up

a single interpretation based on selected portions of

the domain rather than on many alternative

interpretations [24,25]. If the mapping produced is

not optimal then this mapping will be abandoned

and another constructed. The completely serial

nature of IAM processing, however, has produced

doubts about its ability to scale up [26]. I-SME is an

incremental version of SME based, in part, on the

IAM architecture [26]. The most significant difference

with the latter program is that, instead of the

strictly serial approach adopted by IAM, I-SME mixes

serial and parallel processing.

In recent work, another SME-based program, SEQL,

has been applied to infant categorization [27]. The

authors suggest that categories are represented via

structured descriptions and formed by a process of

progressive abstraction, through successive

comparison with incoming exemplars.

Burstein’s CARL extends the ideas of Gentner in a

multi-stage analogy-making program that constructs

analogies based on several others presented by a

teacher in a somewhat context-dependent manner [28].

Kedar-Cabelli’s model of purpose-driven analogy

attempts to derive relevant structural and functional

features automatically in order to make mappings [29].

Recently, a ‘path-mapping’ model [30] of how

humans integrate analogical mapping and problem-

solving has been developed based on ACT-R [31]. ACT-R

has also been used in the context of analogy-making

to attempt to develop a unified theory of metaphor

Opinion

SME, the Structure Mapping Engine [a],
a computational implementation of
the Structure Mapping Theory [b], 
has been the most influential
computational model of analogy-
making to date. It receives
predicate-calculus representations of
the base and source and searches
both representations to determine
where there are structural similarities
between them. It builds a mapping
between the two situations based on
these structures and their overall
coherence. Discovering two matching
systematic structures (Fig. I, heavy
lines) in the source (Solar system)
and in the target (Rutherford atom)
allows the program to transfer
structure found in the source to the
target (in this case, to conclude that
the cause of the electron revolving
around the nucleus is the charge). 
It is hard to know what conclusions
SME might have drawn if the
representation of the Rutherford atom
had also included the fact that, in
addition to electrical forces, there are
gravitational forces between the
nucleus and the electron (for a
discussion of this point, see Ref. [c]).

References
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Gentner, D. (1989) The structure-
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b Gentner, D. (1983) Structure-
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Sameness: A Theory and Computer
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Box 2. Structure mapping
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understanding, semantic illusions and text

memory [32] and to model invention by analogy [33].

A final pair of symbolic models, BORIS [34] and

MORRIS [35], deserve mention. These programs

attempt to understand narrative through the use of

abstract ‘thematic abstraction units’, which closely

resemble Schank’s ‘Thematic Organization Points’

(TOPS) [36] implemented in a dynamically organized

memory. Analogies in these models are recognized

largely through structural relations, rather than

with simple attribute information.

Connectionist models

Symbolic systems are generally well equipped to

model relational structures involving situations

represented as objects and relations between

objects. For this reason, these models held the high

ground for many years in the computational

modeling of analogy-making. However,

connectionist models have taken their place

alongside symbolic models of analogy-making,

largely owing to recent advances in their

representation techniques. Most importantly,

distributed connectionist representations provide a

natural internal measure of similarity, thereby

allowing the system to handle with relative ease 

the problem of similar, but not identical, relations, 

a problem that has proved difficult for 

symbolic models.

ACME was the first attempt to develop an

architecture in which analogy-making was an

emergent result of constrained, parallel activation of

states of in a neural network-like structure [37]. In

this model, structural similarity, semantic similarity,

and pragmatic importance determine a set of

constraints to be simultaneously satisfied. The model

is supplied with representations of the target and

source and proceeds to build a localist constraint-

satisfaction network in which hypothesis nodes

correspond to all possible hypotheses pairing the

elements of the source with those of the target.

Excitatory and inhibitory links between these nodes

implement the constraints. In this way, contradictory

hypothesis nodes compete with one another and

(usually) do not become simultaneously active,

whereas consistent nodes tend to mutually support

each other. The relaxation of the network provides a

parallel evaluation of all possible mappings and finds

the best one, represented by the set of most active

hypothesis nodes. ARCS is a model of retrieval that is

coupled with ACME in which mapping is dominated by

structural similarity and retrieval is dominated by

semantic similarity [38].

One of the most ambitious connectionist models

of analogy-making is LISA [39]. Whereas ACME

required all objects in the source to be pairwise

connected to all elements in the target, LISA relies 

on more plausible mechanisms, such as partially

distributed representations of concepts, selective

activation and dynamic binding as the means of

associating the relevant structures. Only node

structures that oscillate in synchrony are bound

together [40,41]. Crucially, the synchronous binding

mechanism means that both WM and LTM can

interact during both retrieval and mapping. Even

though, for the moment, LISA cannot make

inferences, it does successfully integrate the process

of retrieval of a base and the mapping of the base

and target.

STAR-1, designed to solve proportional analogies,

was the first distributed connectionist model of

analogy-making [42] and is based on the tensor

product connectionist models developed by

Smolensky [43]. STAR-2 is a recent and more complex

version of STAR-1, developed in an attempt to achieve

a better understanding of the development of

analogy-making capabilities in children [44].

DRAMA [45] is a recent connectionist model of

analogy-making that implements holographic

reduced representations [46], a type of convolution-

correlation memory [47]. This program, using fully

distributed representations of concepts, attempts to

integrate the semantics and structure of the base

and target during the mapping process.

Jani and Levine [48] have developed a

neural-network approach to analogy-making based

on Adaptive Resonance Theory [49]. This system 

has a concept-association mechanism based on

synaptic triads, and explicitly appeals to

neurobiological plausibility. Analogator is a

connectionist model that learns to make analogies

by seeing numerous analogies (Blank, PhD thesis,

Indiana University, 1996).

Hybrid models

Hybrid models share features of both connectionist

and symbolic models. (The term ‘connectionist’

here is meant to be broadly construed, encompassing

architectures that rely on connectionist-like

mechanisms, such as spreading activation 

among node structures, excitation and inhibition

between nodes, and so forth.) The first two models

discussed here rely on agent-based approaches to

analogy-making.

COPYCAT ([50]; see Box 3), TABLETOP [51], LETTER-

SPIRIT [52], and METACAT [53] form a family of models

whose basic architectural principles were described

by Hofstadter [54,55]. Three of the most important

features of these models of analogy-making are:

(1) their ability to build up their own representations of

the source and target as well as the mapping between

them via an agent-driven interaction between top-

down (LTM) and bottom-up (WM) processing; (2) their

Opinion

‘...connectionist models have taken

their place alongside symbolic

models of analogy-making...’
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use of (simulated) parallelism; and (3) their stochastic

nature. These models abandon traditional sequential

processing and allow representation-building and

mapping to run in parallel and continually to

influence each other. In this way, partial mappings

can have an impact on further representation-

building (and vice-versa), thus allowing the gradual

construction of context-sensitive representations.

AMBR [56], an analogical problem-solver, is based on

the principles of the DUAL model [57], a general, context-

sensitive cognitive architecture consisting of many

micro-agents each of which represents a small piece of

knowledge. Each micro-agent has a symbolic part that

encodes the declarative and/or procedural knowledge it

is representing, and a connectionist part that computes

the agent’s activation level, which represents the

relevance of this knowledge to the current context.

The AMBR model, and its later extension, AMBR-2 [58],

implement the interactive parallel processes of

recollection, mapping and transfer that emerge from

the collective behavior of the agents. The result is an

analogy, but also a re-representation of the old

episode which might turn out to be illusory memory.

Other hybrid models that combine symbolic and

connectionist mechanisms use spreading activation

mechanisms, node structures implementing

knowledge bases, and other mechanisms, and

include ASTRA [59] and ABR-Conposit [60]. ASTRA

implements ‘continuous analogical reasoning’, which

recognizes the importance of integrating the various

stages of analogy-making rather than treating them

independently. ABR-Conposit is an implementation of

Analogy-Based Reasoning that implements WM–WM

matching, creates and modifies WM representations,

and manipulates complex data structures in an explicit

attempt to bridge the symbolic–connectionist gap.

Conclusion

I have presented a brief, and necessarily incomplete,

survey of computational models of analogy-making

over the past 35 years. These models are divided into

three broad classes: those whose architectures are

based largely on the principles of the symbolic

tradition of artificial intelligence, those that draw on

connectionist principles, and, finally, hybrid models

that depend on a combination of these and other

principles. Even though the field has come a long way

since Walter Reitman’s and Thomas Evans’ first

analogy-making programs of the mid-1960s, great

challenges still lie ahead. These include: (1) the

development of context-sensitive ways for analogy

programs to settle on the appropriate representations

of the base and target situations; (2) the development

of a better understanding of the long-term memory

retrieval mechanisms that allow ‘analogous’

situations to be activated in working memory; (3) the

systematic exploration of experimenter-independent

representation-building and learning mechanisms;

and (4) the incorporation of these mechanisms into

analogy-making programs – and all of this, with a

keen eye, as always, to the all-important issue of

scaling-up. The lessons of almost 40 years of research

in the computational modeling of analogy-making

have, more than anything else, shown us just how

hard the problem is. Analogy-making is so intimately

and so deeply part of human cognition that it is

probably safe to say that any program capable of

doing analogy-making in a manner truly comparable

to human beings would stand a very good chance of

passing the Turing Test.

Opinion

COPYCAT [a,b] solves letter-string analogies 
of the form: ABC:ABD::KJI:? and gives

probabilistically possible answers, such as
LJK, KJJ, KJD (see Fig. I). The architecture of

COPYCAT involves a working memory, a
semantic network (simulating LTM) 
defining the concepts used in the system
and their relationships, a procedural memory
storing small, nondeterministic
computational agents (‘codelets’) that 
build, examine and, possibly, destroy the
structures in the working memory and
continually interact with the semantic
network. The system gradually settles
towards a set of consistent set of structures
that will determine the mapping between the
base and the target.
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Box 3. Using non-deterministic agents

a b c

k j i

a b d

l j i

Replace letter-category of rightmost letter by successor 

whole → whole
group → group
succgrp → succgrp
right → left
succ → succ
letcat → letcat

let → let
rmost → lmost 

mid → mid let → let 
lmost → rmost 

Replace letter-category of leftmost letter 
by successor 
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Fig. I. (see text for details)
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