The Turing Test: the first 50 years

Robert M. French

The Turing Test, originally proposed as a simple operational definition of intelligence, has now been with us for exactly half a century. It is safe to say that no other single article in computer science, and few other articles in science in general, have generated so much discussion. The present article chronicles the comments and controversy surrounding Turing’s classic article from its publication to the present. The changing perception of the Turing Test over the last 50 years has paralleled the changing attitudes in the scientific community toward artificial intelligence: from the unbridled optimism of 1950s to the current realization of the immense difficulties that still lie ahead. I conclude with the prediction that the Turing Test will remain important, not only as a landmark in the history of the development of intelligent machines, but also with real relevance to future generations of people living in a world in which the cognitive capacities of machines will be vastly greater than they are now.

The invention and development of the computer will un
doubtedly rank as one of the twentieth century’s most far
reaching achievements that will ultimately rival or even sur
pass that of the printing press. At the very heart of that
development were three seminal contributions by Alan
Mathison Turing. The first was rhetorical in nature: in order
to solve a major outstanding problem in mathematics, he
developed a simple mathematical model for a universal com
paring machine (today referred to as a Turing Machine). The
second was practical: he was actively involved in building

one of the very first electronic, programmable, digital computers. Finally, his third contribution was philosophical: he provided an elegant operational definition of thinking that, in many ways, set the entire field of artificial intelligence (AI) in motion. In this article, I will focus only on this final contribution, the Imitation Game, proposed in his classic article in Mind in 1950 (Ref. 1).

The Imitation Game

Before reviewing the various comments on Turing’s article, I will briefly describe what Turing called the Imitation Game (called the Turing Test today). He began by describing a parlour game. Imagine, he says, that a man and a woman are in separate rooms and communicate with an interrogator only by means of a teletype – the 1950s equivalent of today’s electronic ‘chat’. The interrogator must correctly identify the man and the woman and, in order to do so, he may ask any question capable of being transmitted by tele-type. The man tries to convince the interrogator that he is the woman, while the woman tries to communicate her real identity. At some point during the game the man is replaced by a machine. If the interrogator remains incapable of distinguishing the machine from the woman, the machine will be said to have passed the Test and we will say that the machine is intelligent. (We see here why Turing chose communication by teletype – namely, so that the lack of physical features which Turing felt were not essential for cognition, would not count against the machine.)

The Turing Test, as it rapidly came to be described in the literature and as it is generally described today, replaces the woman with a person of either gender. It is also frequently described in terms of a single room containing either a person or a machine and the interrogator must determine whether he is communicating with a real person or a machine. These variations do, indeed, differ somewhat from Turing’s original formulation of his imitation game. In the original the man playing against the woman, as well as the computer that replaces him, are both ‘playing out of character’ (i.e. they are both relying on a theory of what women are like). The modern description of the Test simply pits a machine in one room against a person in another. It is generally agreed that this variation does not change the essence of Turing’s operational definition of intelligence, although it almost certainly makes the Test more difficult for the machine to pass.8 One significant point about the Turing Test is that it is often misunderstood is that finding it proves nothing. Many people would underdistinguish fail if they were put in the role of the computer, but this certainly does not prove that they are not intelligent! The Turing Test was intended only to provide a sufficient condition for intelligence.

To reiterate, Turing’s central claim is that there would be no reason to deny intelligence to a machine that could flawlessly imitate a human’s unrestricted conversation. Turing’s article has unquestionably generated more commentary and controversy than any other article in the field of artificial intelligence, and few papers in any field have created such an enduring reaction. One third of a century after Turing’s article appeared, Anderson had already counted over 1000 published papers on whether machines could think.9 For half a century, references to the Turing Test have appeared regularly in artificial intelligence journals, philosophy journals, technical trade,ov and the popular press. Typewriter ‘Turing Test’ into any Web browser and you will have thousands of hits. Perhaps the reason for this high profile is partly our drive to build mechanical devices that imitate what humans do. However, there seems to be a particular fascination with mechanizing our ability to think. The idea of mechanized thinking goes back at least to the 17th century with the Characteristica Universalis of Leibnitz and extends through the work of La Mettrie to the writings of Hobbes, Pascal, Boole, Babbage and others. The advent of the computer meant that, for the first time, there was a realistic chance actually achieving the goal of mechanized thought. It is this on-going fascination with mechanized thought that has kept the Turing Test in the evolving interest in the Turing Test: 1950–1966: a source of inspiration for all concerned with AI research; 1966–1973: a distraction from some more promising avenues of AI research; 1973–1990: by now a source of distraction mainly to philosophers, rather than AI workers; 1990 onwards: consigned to history.

I am not sure exactly what Whitby means by ‘consigned to history’, but if he means ‘forgotten’, I personally doubt that this will be the case. I believe that in 300 years’ time people will still be discussing the arguments raised by Turing in his paper. It could even be argued that the Turing Test will take on an even greater significance several centuries in the future when it might serve as a moral yardstick in a world where machines will move around much as we do, will use natural language, and will interact with humans in ways that are all too inconceivable today. In short, one of the questions facing future generations may well be: ‘To what extent do machines have to act like humans before it becomes immoral to damage
or destroy them? And the very essence of the Turing Test is our judgment of how well machines act like humans.

Shift in perception of the Turing Test

It is easy to forget just how high the optimism once ran for the rapid achievement of artificial intelligence. In 1958, a mere eight years after the appearance of Turing’s article, when computers were still in their infancy and even high-level programming languages had only just been invented, Simon and Newell1, two of the founders of the field of artificial intelligence, wrote, ‘…there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the problems they can handle will be co-extensive with the range to which the human mind has been applied’. Minsky, head of the MIT AI Laboratory, wrote in 1967, ‘Within a generation the problem of creating “artificial intelligence” will be substantially solved’12.

During this period of initial optimism, most of the authors writing about the Turing Test shared with the founders of AI the belief that a machine could actually be built that would be able to pass the Test in the foreseeable future. The debate, therefore, centered almost exclusively around Turing’s operational definition of disembodied intelligence – namely, did passing the Turing Test constitute a sufficient condition for intelligence or not? As it gradually dawned on AI researchers just how difficult it was going to be to produce artificial intelligence, the focus of the debate on the Turing Test shifted. By 1982, Minsky’s position regarding artificial intelligence had undergone a radical shift from one of unbounded optimism 15 years earlier to a far more sober assessment of the situation: ‘The AI problem is one of the hardest critical questions we face, and one we may well do things that could not have been anticipated by its programmer.’

A brief chronicle of early comments on the Turing Test

Mays wrote one of the earliest replies to Turing, questioning the fact that a machine designed to perform logical operations could actually capture ‘our intuitive, often vague and imprecise, thought processes’18. Importantly, this paper contained a first reference to a problem that would take center stage in the artificial intelligence community three decades later: ‘Defenders of the computing machine analogy seem implicitly to assume that the whole of intelligence and thought can be built up summatively from the warp and woof of atomic propositions’. This objection, in modified form, would re-appear in the 1980s as one of the fundamental criticisms of traditional artificial intelligence.

In Searle’s first article14, he arrived at the conclusion that merely imitating human behaviour was certainly not enough for consciousness. Then, a decade later, apparently seduced by the claims of the new AI movement, he changed his mind completely, saying ‘Now I believe that it is possible to construct a supercomputer as to make it wholly unreasonable to deny that it had feelings’.

Gunderson clearly believed that passing the Turing Test would not necessarily be a proof of real machine intelligence14,21. Gunderson’s objection was that the Test is based on a behavioristic construal of thinking, which he felt must be rejected. He suggested that thinking is a very broad concept and that a machine passing the Imitation Game is merely exhibiting a single skill (which we might dub ‘imitation-game playing’), rather than the all-purpose abilities defined by thinking. Further, he claimed that playing the Imitation Game successfully could well be achieved in ways other than by thinking, without saying precisely what these other ways might be. Stevenson, writing a decade later when the difficulties with AI research had become clearer, criticized Gunderson’s single-skill objection, insisting that to play the game would require ‘a very large range of other properties’.

In articles written in the early 1970s we see the first shift away from the acceptance that it might be possible for a machine to pass the Turing Test. Even though Pumper’s basic objection26 to the Turing Test was essentially the Lady Lovelace objection (i.e. that any output is determined by what the programmer explicitly put into the machine, and therefore can be explained in this manner), he concluded his paper in a particularly profound manner, thus: ‘…if a
The Turing Test interrogator prepares a long list of subcognitive questions (Subcognitive Question List) and produces a profile of answers to these questions from a representative sample of the general population, for example:

- On a scale of 0 (completely implausible) to 10 (completely plausible):
 - Very easy to imagine yourself getting a grade of 7 or better?
 - How do you feel about the prospect of a robot that can pass this test? (Ref. 22)
 - How confident are you that a computer could pass this test?
 - Do you think that it is possible for a computer to pass this test in the immediate future?

We can imagine many more questions that would be designed to test not only for subcognitive associations, but for internal physical structure. These would include questions whose answers would be, for example, a product of the spacing of the candidate's eyes, would involve visual aftereffects, would be the results of little self-experiments involving tactile sensations on their bodies or sensations after running in place, and so on. The interrogator would then come to the Turing Test and help both candidates the questions on her Subcognitive Question List. The candidate most closely matching the average answer profile from the human population will be the human.

A more general idea here is that the 'symbolic/symbols-out' level specified in Turing's original article (Harnad's level T2) could play the complete, "any question" imitation game it might indeed cause us to consider that perhaps that computer was capable of thought. But that any computer might be able to play such a game in the foreseeable future is so immensely improbable as to make the whole question academic". Sampson replied that low-level determinism (i.e. the program and its inputs) does not imply predictable high-level behaviour. Two years later, Millar presented the first explicit discussion of the Turing Test's anthropomorphism: "Turing's test forces us to ascribe typical human objectives and human cultural background to the machine, but if we are to be serious in contemplating the use of such a term [intelligence] we should be open-minded enough to allow computing machinery or Mariances to display their intelligence by means of behaviour which is well-adapted for achieving their own specific aims".

Most agreed that passing the test would constitute a sufficient proof of intelligence. He viewed the Test as 'a potentially source of good inductive evidence for the hypothesis that machines can think', rather than as a purely operational definition of intelligence. However, he suggested that it is of little value in guiding real research on artificial intelligence. Stalker replied that an explanation of how a computer passes the Turing Test would require an appeal to mental, not purely mechanical notions. More than countered that these two explanations are not necessarily competitors.

References

Comments from the 1980s

Numerous papers on the Turing Test appeared at the beginning of the 1980s, among them one by Hofstadter. This paper covers a wide range of issues and includes a particularly interesting discussion of the ways in which a computer simulation of a hurricane differs or does not differ from a real hurricane. (For a further discussion of this point, see Ref. 28.) The two most often cited papers from this period were by Block and Searle. Instead of following up the lines of inquiry opened by Purtill and Millar, these authors continued the standard line of attack on the Turing Test, arguing that even if a machine passed the Turing Test, it still might not be intelligent. The explicit assumption was, in both cases, that it was, in principle, possible for machines to pass the Test.
Block claimed that the Test is testing merely for behaviour, not the underlying mechanisms of intelligence 30. He suggested that a mindless machine could pass the Turing Test in the following way: the Test will be defined to last an hour; the machine will then memorize all possible conversational exchanges that could occur during an hour. Thus, whenever the questions of the interrogator lead, the machine will be ready with a perfect conversation. But for a mere hour’s worth of conversation such a machine would have to store at least 10^{1500} 20-word strings, which is far, far greater than the number of particles in the universe. Block drops all pretence that he is talking about real computers in his response to this objection: ‘My argument requires only that the machine be logically possible, not that it be feasible or even nomologically possible’. Unfortunately, Block is no longer talking about the Turing Test because, clearly, Turing was talking about real computers (cf. sections 3 and 6 of Turing’s article). In addition, a real interrogator might throw in questions with invented words in them like, ‘Does the word得很好in a very phallic manner (but the character is still legible)’.

Searle replaced the Turing Test with his now-famous ‘Chinese Room’ thought experiment 30. Instead of the imitation Game we are asked to imagine a closed room in which there is an English-speaker who knows not a word of Chinese. A native Chinese person writes a question in Chinese on a piece of paper and sends it into the room. The room is full of symbolic rules specifying inputs and outputs. The English-speaker then matches the symbols in the question with symbols in the rule base. This does not have to be a direct table matching of the string of symbols in the question with symbols in the rule base, but can include any type of look-up program, regardless of its structural complexity. The English-speaker is blindfolded through the maze of rules to a string of symbols that constructs an answer to the question. He copies this answer on a piece of paper and sends it out of the room. The Chinese person on the outside of the room would see a perfectly legible answer.

Could any machine ever pass the Turing Test?

In the mid-1980s, Dennett emphasized the sheer difficulty of achieving even T2 and stresses the impossibility of implementing disembodied cognition. Schweizer wishes to improve the Robotic Turing Test (T3) by proposing a Truly Total Turing Test in which a long-term temporal dimension is added to
Box 2. The Turing Test hierarchy

Stenar Harnad has proposed a five-level Turing Test (TT) hierarchy (Ref. 1). This hierarchy attempts to encompass various levels of difficulty in playing an Imitation Game. The levels are T1, T2, T3, T4, and T5. The Harnad hierarchy works as follows:

Level T1
The "toy model" level. There are models ("toy") that only handle a fragment of our cognitive capacity. So, for example, Colby's program designed to imitate a paranoid schizophrenic would fall into this category, because 'the TT is predicated on total functional indistinguishability, and toys are mostly distinguishable from the real thing.'

Level T2
This is the level described in Turing's original article. Harnad refers to it as the "pen-pal version" of the Turing Test, because all exchanges are guaranteed by the telegraph link to occur in a symbol-in/symbol-out manner. Thus, T2 calls for a system that is indistinguishable from us in its symbolic (i.e. linguistics) capacities. This is also the level for which Searle's Chinese Room experiment is written. One central question is to what extent questions at this level can be answered successfully, but indirectly, to probe the deep levels of cognitive, or even physical structure of the candidates.

Level T3: The 'Total Turing Test' (or the robotic Turing Test)
At this level, the candidates are 'empirically identical in kind, right down to the last electron', but there remain unobservable-in-principle differences at the level of their designer's GUTEs.

Many of these objections concerning the difficulty of making an actual machine that could pass the Turing Test are also voiced by Crockett in his discussion of the relationship of the Turing Test to the famous frame problem in AI. For example, Crockett claims that passing the Turing Test is essentially equivalent to solving the frame problem (see also Ref. 49). Crockett arrives at essentially the same conclusion as French. ‘I think it is unlikely that a computer will pass the test... because I am particularly impressed with the test's difficulty...it is more difficult and anthropocentric than even Turing fully appreciated.’

Mitchie introduced the notion of ‘superarticulacy’ into the debate. He claims that for certain types of phenomena that we view as purely intuitive, there are, in fact, rules that can explain our behavior, even if we are not consciously aware of them. We could unmask the computer in a Turing Test because, if we gave the machine rules to answer certain types of subcognitive questions – for example, 'how do you pronounce the plural of the imaginary English word plarch?...’ – the machine would be able to explain how it gave these answers, but we humans could not, or at least our explanation would not be the one given by the computer. In this way we

References

could catch the computer out and it would fail the Turing Test. The notion of superarticulacy is particularly relevant to current cognitive science research. Our human ability to know something without being able to articulate that knowledge, or to learn something (as demonstrated by an ability to perform a particular task) without being aware that we have learned it, is at present a very active line of research in cognitive science.

In a recent and significant comment on the Turing Test, Watt proposed the Inverted Turing Test (ITT) based on considerations from ‘naive psychology’51 – our human tendency and ability to ascribe mental states to others and to ourselves. In the ITT, the machine must show that its tendency to ascribe mental states (e.g. ‘guilt’) to people is indistinguishable from that of a real human. A machine will be said to pass the ITT if it is ‘unable to distinguish between two humans, or between a human and a machine that can pass the normal TT, but which can discriminate between a human and a machine that can be told apart by a normal TT with a human observer’50. There are numerous replies to this proposal52–55. It can be shown, however, that the ITT can be simulated by the standard Turing Test55. French used the technique of a ‘Human Subititative Profile’ (i.e. a list of subititative questions whose answers have been gathered from people in the larger population, see Box 1) to show that a mindless program using the Profile could pass this variant of the Turing Test56. Ford and Hayes54 renewed their appeal to reject this type of test as any kind of meaningful yardstick for AI. Collins suggested his own type of test, the Editing Test53, based on ‘the skillful way in which humans “repair” deficiencies in speech, written texts, handwriting, etc., and the failure of computers to achieve the same interpretative competence’53.

Loebner Prize

An overview of the Turing Test would not be complete without briefly mentioning the Loebner Prize56,57, which originated in 1991. The competition stipulates that the first program to pass an unrestricted Turing Test will receive $100,000. For the Loebner Prize, both humans and machines answer questions by the judges. The competition, however, is among the various machines, each of which attempts to fool the judges into believing that it is a human. The machine that best plays the role of a human wins the competition. Initially, restrictions were placed on the form and content of the questions that could be asked. For example, questions were restricted to specific topics, judges who were computer scientists were disallowed, and ‘trick questions’ were not permitted.

There have been numerous attempts at ‘restricted’ simulations of human behaviour over the years, the best known probably being Colby’s PARRY58,59, a program that simulates a paranoid schizophrenic by means of a large number of canned routines, and Weizenbaum’s ELIZA60, which simulates a psychiatrist’s discussion with patients.

Aside from the fact that restricting the domain of allowable questions violates the spirit of Turing’s original ‘anything-goes’ Turing Test, there are at least two major problems with domain restrictions in a Turing Test. First, there is the virtual impossibility of clearly defining what does and does not count as being part of a particular real-world domain. For example, if the domain were International Politics, a question like, ‘Did Ronald Reagan wear a shirt when he met with Mikhail Gorbachev?’ would seem to qualify as a ‘trick question’, being pretty obviously outside of the specified domain. But now change the question to, ‘Did Mahatma Gandhi wear a shirt when he met with Winston Churchill?’ Unlike the first, the latter question is squarely within the domain of international politics because it was Gandhi’s practice, in order to make a political/cultural statement, to be shirtless when meeting with British statesmen. But how can we differentiate these two questions a priori, accepting one as within the domain of international politics, while rejecting the other as outside of it? Further, even if it were somehow possible to clearly delimit a real-world domain, what would determine whether a domain were too restricted? In a tongue-in-cheek response to Colby’s claims that PARRY had passed something that could rightfully be called a legitimate Turing Test, Weizenbaum claimed to have written a program for another restricted domain: infant autism61. His program, moreover, did not even require a computer to run on; it could be implemented on an electric typewriter. Regardless of the question typed into it, the typewriter would just sit there and hum. In terms of the domain-restricted Turing Test, the program was indistinguishable from a real autistic infant. The deep point of this example is the problem with domain restrictions in a Turing Test.

To date, nothing has come remotely close to passing an unrestricted Turing Test and, as Dennett, who agreed to chair the Loebner Prize event for its first few years, said, ‘… passing the Turing Test is not a sensible research and development goal for serious AI62. Few serious scholars of the Turing Test, myself included, take this competition seriously and Minsky has even publicly offered $100 for anyone who can convince Loebner to put an end to the competition58. (For those who wish to know more about the Loebner Competition, refer to Ref. 57.)

There are numerous other commentaries on the Turing Test. Two particularly interesting comments on actually building truly intelligent machines can be found in Dennett64 and Waltz65.

Conclusions

For 50 years the Turing Test has been the object of debate and controversy. From its inception, the Test has come under fire as being either too strong, too weak, too anthropocentric, too broad, too narrow, or too coarse. One thing, however, is certain: gradually, ineluctably, we are moving into a world where machines will participate in all of the activities that have hitherto been the sole province of humans. While it is unlikely that robots will ever perfectly simulate human beings, one day in the far future they might indeed have sufficient cognitive capacities to pose certain ethical dilemmas for us, especially regarding their destruction or exploitation. To resolve these issues, we will be called upon to consider the question: ‘how much are these machines really like us?’ and I predict that the yardstick that will be used measure this similarity will look very much like the test that Alan Turing invented at the dawn of the computer age.
Opinion

French - The Turing Test

Acknowledgements

The present paper was supported in part by research grant IUF/PA 19 from the Belgian government. I am grateful to Dan Dennett and Stevan Harnad for their particularly helpful comments on an earlier draft of this review.

References

19 Gunther, K. (1966) Turing’s test. Artificial Intelligence 2, 235–246
40 Harnad, S. (1986) The Turing Test is not a test. Turing individuality is a scientific criterion. Sigart Bull. 3, 9–10
42 Harnad, S. Turing on reverse-engineering the mind. J. Logic, Lang. Info (in press)
52 Bringsjord, S. (1996) The Inverted Turing Test is provably redundant. Psychological Review 103
55 French, R. (1996) The Inverted Turing Test: a simple (mindless) program that could pass it. Psychological 93

Do you want to reproduce material from Trends in Cognitive Sciences?

This publication and the individual contributions within it are protected by the copyright of Elsevier Science Ltd. Except as outlined in the copyright statement (see p. iv), no part of Trends in Cognitive Sciences may be reproduced, either in print or electronic form, without written permission from Elsevier Science Ltd. Please address any permission requests to:

Elsevier Science Global Rights Department, PO Box 800, Oxford, UK OX5 1DX