
All experimental psychologists understand the impor-
tance of randomizing lists of items. Randomization is ar-
guably the most widely used and most effective means 
of eliminating order biases. However, there are virtually 
always constraints on the items to be randomized, and a 
problem too often overlooked, forgotten, or ignored is that 
these constraints, designed to eliminate particular biases, 
frequently engender others.

Consider a simple problem, one that most experimental 
psychologists have faced at one time or another and that 
some face every time they design an experiment—namely, 
randomizing a list of items of different frequencies without 
immediate repetitions. Creating such a list is generally con-
sidered to be relatively straightforward. It turns out, however, 
that doing this correctly is considerably harder than it would 
seem. This article will (1) point out a very serious bias that 
is introduced by a widely used, standard list-randomization 
algorithm; (2) show that constrained randomization can en-
gender other problems that are unrelated to the specific ran-
domization algorithm chosen; and (3) introduce a series of 
techniques that allow these problems to be avoided. In this 
article, we will undertake an analysis of list randomization 
under the simplest, arguably most universal, and seemingly 
most innocuous of all constraints—namely, the prohibition 
of immediately repeated identical elements.

Removing Immediately Repeated Items  
From Randomized Lists

There are many reasons why immediately repeated 
identical elements must be removed from sets of famil-

iarization items and sets of test items. Removing repeated 
items is almost universally practiced among experimental 
psychologists, except, of course, in studies aimed at in-
vestigating the specific effect of immediate repetitions 
(for repetition priming studies, see, e.g., Jacoby, 1983; for 
studies on massed practice, see, e.g., Seabrook, Brown, 
& Solity, 2005). For instance, in word segmentation stud-
ies using a continuous speech stream (e.g., Saffran, New-
port, & Aslin, 1996), the immediate repetition of artificial 
words is universally prohibited in the familiarization lan-
guage. Likewise, there is no repetition in studies using 
serial reaction time tasks (e.g., Nissen & Bullemer, 1987). 
In a large range of domains, immediate repetition of items 
during the test phase is also avoided in order to prevent the 
appearance of sequential effects.

A Serious Problem With a Standard  
List-Randomization Algorithm

We begin by examining a list-randomization algorithm 
that is very widely used for randomizing lists of items in 
such a way that there are no immediately repeated items. 
For the sake of illustration, we will start with a set W of 
45 As, 45 Bs, 90 Cs, and 90 Ds and draw from this set. We 
can create the randomized item list S by randomly draw-
ing items from W and adding them to the end of list S. If 
a newly chosen item from W is the same as the previously 
chosen item added to S, the new item is returned to W, and 
another item is drawn from W. This is continued until W 
is empty. This is a modification of an algorithm described 
in Brysbaert (1991, Algorithm 10). When immediately 
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twice as often as As in the original list, W. This causes the 
beginning of the randomized list S to be disproportion-
ately overloaded with As and Bs and the end of the list to 
be disproportionately overloaded with Cs and Ds.

An Efficient “Distributed”  
Randomization Algorithm

The item imbalance problem associated with this algo-
rithm can be eliminated by using a simple “distributed” 
randomization algorithm. We begin by putting all of the 
items from W that will make up the randomized list into S. 
We randomly shuffle these items and then remove the re-
peated element of all immediately repeated pairs of items. 
These repeats are put in a list R. This ensures that S, a list 
of length n, now contains no immediately repeated items. 
We then create an index list I consisting of the numbers 
from 1 to n in random order. We pick an element r from 
list R and run down Index list I, attempting to find an 
index at which to insert r into S that will satisfy the order 
constraints of the desired sequence. Once r is inserted 
into S, S will have length n 1 1. We now create a new 
randomized index list consisting of the numbers from 1 to 
n 1 1 and pick a new item from R to be inserted into S, 
and so forth. If ever a given r cannot be inserted into S, 
we return it to R and pick another r, and so on, until all of 
the items of R have been inserted into S. This algorithm 
is fast (for instance, on a PC running Windows XP with 
a 1.2-GHz processor, a MATLAB implementation of the 
algorithm takes less than 1 sec to create 100 randomized 
lists of 270 items) and eliminates the item distribution im-
balances created by the standard randomization algorithm 
discussed in the previous section.

However, in many experimental settings, we are con-
cerned not only with the number and distribution of items 
but also with the number and distribution of transitions 
between items. The present algorithm provides no control 
over this. The number of various item pairs (immediately 
adjacent items) can vary significantly from sequence to 
sequence when using this algorithm. To solve this par-
ticular problem, as well as a number of other problems 
that we will discuss below, we now introduce a simple and 
efficient technique for generating correctly randomized 
sequences.

Transition-Frequency and  
Transition-Probability Tables

Unfortunately, imbalances in item frequencies across a 
list are not the only problems that arise when one random-
izes lists on which there are even simple order constraints. 
In order to develop a method of revealing these problems 
and, ultimately, of creating correctly randomized lists in 
general, we need to introduce the notion of transition ta-
bles. Instead of focusing on the frequencies of the items in 
a list, we can use a transition table to help us keep track of 
the frequencies of the transitions between items in a list.

The simplest use of transition tables is as an accounting 
tool. If we have a particular sequence, say, ACABCBAB-
CABACBCBAC, we can tally the number of immediately 
adjacent items (item pairs, or transitions) and record these 
tallies in an item-pair frequency table (see Table 1A).

repeated items are allowed, this algorithm is perfectly ap-
propriate for generating correctly randomized sequences. 
However, when it is modified as described above in order 
to eliminate repeated items—as it very often is—very se-
rious problems can result.

It turns out that this commonly used randomization al-
gorithm will produce a dramatic bias in S when the item 
frequencies in W are different. Since there are twice as 
many Cs and Ds as As and Bs in W, we expect the ratio of 
As (or Bs) to Cs (or Ds) to be 0.5 throughout the list. How-
ever, the requirement of no immediately repeated items 
causes this algorithm to produce a list in which the ratio 
of As (or Bs) to Cs (or Ds) is significantly greater than 0.5 
(around 0.6) in the first fifth of the list and considerably 
less than 0.5 (approximately 0.3) over the final fifth of the 
list (Figure 1).

Depending on the experiment being run, this extreme 
imbalance across the list could result in frequency effects 
being confounded with primacy or recency effects. For 
instance, an investigator could be led to minimize the im-
pact of item frequency on memory simply because less 
frequent items tend to occur more often than expected at 
the beginning of the study list, hence benefiting from a 
greater primacy effect than more frequent items.

The problem is caused by returning repeated items to 
W when certain items are more frequent than others. In 
our example, there are twice as many Cs as As in W. Con-
sequently, there will be at least four times as many CC 
repeats as AA repeats when one creates list S. For instance, 
assume that we had simply randomized W with no con-
cern about repeated items. In this case, the probability of 
an AA pair (requiring an A to be returned to W) would be 
1/36 because the p(A) 5 1/6; the probability of a CC pair 
(requiring a C to be returned to W) would be 1/9 because 
p(C ) 5 1/3. In other words, we will have to return four 
times as many Cs as As to W, even though Cs occur only 
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Figure 1. The distribution of the ratio of less frequent to more 
frequent items in a list produced by a standard list randomiza-
tion algorithm. Differing item frequencies in the items to be ran-
domized result in significant differences among expected item 
frequencies in different sections of the final list.
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Remillard and Clark (1999) and Remillard (2008) have 
discussed the use of transition tables for generating cor-
rectly randomized sequences and present an efficient al-
gorithm for doing so. At the end of the present article, we 
too present a simple algorithm for sequence generation 
that starts with a transition table. But a major problem 
remains—namely, how to create the transition tables that 
are used as input for these algorithms. As we will see, this 
is not a particularly simple problem. One of the main goals 
of this article is to show how to correctly derive these tran-
sition tables starting with the desired item frequencies.

For example, assume we wish to create sequences with 
12 As, 12 Bs, and 12 Cs, uniformly distributed, with no 
immediately repeated items. We create the conditional 
probability transition table by reasoning that if we have 
just drawn an A, then in order to avoid drawing another A, 
we restrict ourselves to drawing Bs or Cs, of which there 
are 12 and 12, respectively. Therefore, the conditional 
probability of drawing either a B or a C after having just 
drawn an A is .5. Similarly, if we draw a B, the conditional 
probability of drawing an A is 12/(12 1 12) 5 .5, and 
the conditional probability of drawing a C is 12/24 5 .5. 
Finally, if we have drawn a C, the conditional probability 
of drawing an A is 12/24 5 .5, and that of drawing a C is 
12/24 5 .5. This gives us the conditional probability tran-
sition and item-pair frequency tables shown as Tables 2A 
and 2B for any randomized sequence with 12 As, 12 Bs, 
12 Cs, and no immediately repeated items. These tables 
are perfectly correct and can be used to generate the de-
sired sequences.

Now consider creating a similar item-frequency table 
for sequences with 6 As, 12 Bs, 12 Cs, and no immedi-
ately repeated items. Exactly as before, we reason that if 
we have just drawn an A, then in order to avoid drawing 
another A, we restrict ourselves to drawing Bs or Cs, of 
which there are 12 and 12, respectively. Therefore, the 
conditional probability of drawing either a B or a C after 
having just drawn an A is .5. Similarly, if we draw a B, the 

Item-pair frequency tables can easily be converted to 
conditional probability transition tables by dividing all of 
the elements of each row by the total number of elements 
in that row (Table 1B). Each cell in this case will contain 
the probability that, given the first item, the second item 
will follow it. If we start with an A, it will be followed half 
of the time by a B, half of the time by a C, and never by 
an A. This is expressed as p(B | A) 5 .5, p(C | A) 5 .5, and 
p(A | A) 5 0.

Finally, we can also derive a table of joint probabilities 
from Table 1A. This table is obtained by dividing the in-
dividual numbers of transition by the total number of all 
transitions. There are a total of 16 transitions and we thus 
obtain a table like Table 1C. In other words, these tables 
provide a detailed description of a particular sequence. 
But transition tables are far more than an accounting tool 
for characterizing a specific sequence.

Creating Transition Tables That Are  
Based on Sequence Constraints

Now, instead of starting with a specific sequence and 
counting the item-pair frequencies to create an item-pair 
frequency table (as was done above), we start with the 
properties that we would like our sequences to have, 
determine the item-pair frequency table (or conditional 
probabilities table) for all sequences with those proper-
ties, and then use these tables to generate the randomized 
sequences we need. 

Table 1A 
Item-Pair Frequency Table

Second Item

 A B C
Fi

rs
t I

te
m A 0 3 3

B 3 0 3

C 3 3 0
 

Table 1B 
Conditional Probability Transition Table

Second Item

 A B C

Fi
rs

t I
te

m | A 0 .5 .5

| B .5 0 .5

| C .5 .5 0
 

Table 1C 
Joint Probabilities of Item Pairs

Second Item

 A B C

Fi
rs

t I
te

m A 0 .167 .167

B .167 0 .167

C .167 .167 0
 

Table 2A 
Conditional Probability Table Derived From Initial Constraints

Second Item

 A B C

Fi
rs

t I
te

m | A 0 .5 .5

| B .5 0 .5

| C .5 .5 0
 

Table 2B 
Item-Pair Frequency Table Derived From Initial Constraints

Second Item

 A B C

Fi
rs

t I
te

m A 0 6 6

B 6 0 6

C 6 6 0
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immediately repeated items, we must use Tables 4A or 
4B, whose derivation is not obvious, and not Tables 3A 
or 3B. Creating sequences in which there are no imme-
diate item repetitions and where item frequencies differ 
requires tools like those developed in this article in order 
to transform our desired sequence properties into correct 
item-pair frequency tables from which we can generate 
the correctly randomized sequences.

Checking and Generating  
Randomized Sequences

First, we will show some general properties of item-
pair frequency tables for correctly randomized sequences 
without immediately repeated elements. We will then de-
velop a simple general method of using initial item fre-
quencies to produce the correct item-pair frequency table 
for generating correctly randomized sequences with no 
immediately repeated items.

General Properties of Randomized Sequences 
Without Immediate Item Repeats

We will start with an item-pair frequency table (Table 5) 
that corresponds to correctly randomized sequences in 
which there are four item types and no immediately re-
peated items. We will derive the general properties of such 
a table. The frequencies of each item type are N1, N2, N3, 
and N4. We will show how this table can be used to analyze 
a real problem, and then we will generalize this technique 
to tables with any number of item types.

The requirement of a random distribution of items 
will ensure that i, j nij 5 nji. (This is because there is 
no a priori reason, if all items are randomly distributed 
across the list, why a given item type should be preferen-
tially preceded or followed by more items of another item 
type.) Under these conditions, the following relations hold 
for the number of item pairs in each cell of the item-pair 
frequency matrix:

	

N N
n

N N
n

N N
n

N N
n

1 2
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and so on.

Analyzing a Real Example
Aslin, Saffran, and Newport’s (1998) classic experiment 

on infant segmentation of continuous speech relied on the conditional probability of drawing an A is 6/(6 1 12) 5 
.33, and the conditional probability of drawing a C is 
12/18 5 .67. Finally, if we draw a C, the conditional prob-
ability of drawing an A is 6/18 5 .33, and that of drawing a 
C is 12/18 5 .67. This gives us the conditional probability 
transition and item-pair frequency tables shown as Tables 
3A and 3B for any randomized sequence with 6 As, 12 Bs, 
12 Cs, and no immediately repeated items.

The problem is that Tables 3A and 3B are false, and the 
logic used to generate them—seemingly identical to the logic 
that was used to create the correct Tables 2A and 2B—is in-
correct. The correct tables are Tables 4A and 4B.

In other words, if we wish to generate a correctly ran-
domized sequence of 6 As, 12 Bs, and 12 Cs, with no 

Table 3A 
Incorrect Conditional Probability Table for 6 As, 12 Bs, and 12 Cs

Second Item

 A B C

Fi
rs

t I
te

m | A 0 .5 .5

| B .33 0 .67

| C .33 .67 0
 

Table 3B 
Incorrect Item-Pair Frequency Table for 6 As, 12 Bs, and 12 Cs

Second Item

  A B C

Fi
rs

t I
te

m A 0 3 3

B 4 0 8

C 4 8 0
 

Table 4B 
Correct Item-Pair Frequency Table for 6 As, 12 Bs, and 12 Cs

Second Item

 A B C

Fi
rs

t I
te

m A 0 3 3

B 3 0 9

C 3 9 0

Note—The values in the shaded cells differ from those in Tables 3A 
and 3B.

Table 4A 
Correct Conditional Probability Table for 6 As, 12 Bs, and 12 Cs

Second Item

 A B C

Fi
rs

t I
te

m | A 0 .5 .5

| B .25 0 .75

| C .25 .75 0

Note—The values in the shaded cells differ from those in Tables 3A 
and 3B.

Table 5 
A General Item-Pair Frequency Table for  

Randomized Sequences With Four Item Types

Second Item

   1  2  3  4  Subtotals

Fi
rs

t I
te

m

1 0 n12 n13 n14 N1

2 n21 0 n23 n24 N2

3 n31 n32 0 n34 N3

4 n41 n42 n43 0 N4
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ate repeats, an A can only be succeeded by a B, C, or D. 
Since there are 45 Bs, 90 Cs, and 90 Ds, this would seem 
to imply that the probability of drawing a B after an A is

	
p B A( | ) . .=

+ +
= =45

45 90 90
1
5

2
	

In a similar manner, we can calculate all of the other con-
ditional probabilities, allowing us to create Table 6A.

Crucially, for the design of Aslin et al.’s (1998) experi-
ments, p(D | C ) needs to be .5, which would mean that the 
number of CD pairs would, on average, be equal to the 
number of As.1

However, like Table 3A, Table 6A is wrong. When it 
is used to generate a sequence of 270 items, there are, on 
average, considerably too many As and Bs (52, as opposed 
to the 45 desired) than there should be and too few Cs and 
Ds (83, instead of the desired 90). This gives an overall 
A:CD-pair ratio of 1.3:1, almost one third higher than the 
desired ratio of unity.

relationship between item frequencies and between-item 
transition frequencies in the sequence of syllables con-
stituting the familiarization sequence. Not only has this 
experiment been frequently cited, but its design has also 
been used by other researchers on several occasions (Graf 
Estes, Evans, Alibali, & Saffran, 2007). The experimental 
design called for a set of 45 As, 45 Bs, and 90 Cs and al-
lowed no immediate repeats. For reasons that need not 
concern us, the number of As had to be equal to the num-
ber of CD pairs.

But the equations above reveal a surprising fact that 
has escaped notice for the past 10 years—namely, that it 
is impossible to construct such a list unless we accept that 
it contains no AB or BA pairs! 

That there can be no AB or BA transitions follows im-
mediately from the fact that

	

N N
n

N N
n1 2

12
3 4

342 2

+
− =

+
− .

	
This implies that 

	
45 45

2
90 90

212 34
+ − = + −n n ,

	
from which we conclude that n12 5 n34 2 45. In other 
words, there must be 45 fewer AB transitions than CD 
transitions. But one of the constraints of the design is 
that the number of CD pairs is equal to the number of As 
(i.e., 45). Thus, n34 5 45, from which it immediately and 
necessarily follows that n12 5 0. In other words, we can 
fulfill the constraints of the Aslin et al. (1998) design only 
if there are no AB or BA pairs in the list. Obviously, the 
complete absence of these transitions could potentially 
have had a significant effect on their results.

Generalizing the Equations
The relationships described above can be generalized 

to any item-pair frequency table with any number of item 
types. In general, we have the following:

	 ∀ = ∀ =k n n nkk ij jii j0 and , 	 (1)
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+
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Constructing the Right Transition Table
The correct item-pair frequency table (or, equivalently, 

the conditional probability transition table) corresponding 
to the constraints of a given problem can be notoriously 
hard to construct and, as Tables 3A and 3B show, requires 
tools more sophisticated than the “obvious” reasoning that 
led to the construction of these incorrect tables.

Let us return, again for the purposes of illustration, to 
the article by Aslin et al. (1998), in which the key ran-
domized sequence was supposed to contain 45 As, 45 Bs, 
90 Cs, and 90 Ds, with no immediately repeated items. 
Relying on the same (erroneous) logic that produced the 
present Tables 3A and 3B, Aslin et al. derived the condi-
tional probabilities that were at the heart of their study. 
These are the seemingly “obvious” conditional probabili-
ties shown in Table 6A. So, for example, to avoid immedi-

Table 6A 
The “Obvious” Conditional Probability  
Transition Table for Aslin et al. (1998)

Second Item

 A B C D
Fi

rs
t I

te
m

A 0 .2 .4 .4

B .2 0 .4 .4

C .25 .25 0 .5

D .25 .25 .5 0
 

Table 6B 
The Correct Conditional Probability Transition Table for a 

Randomized Sequence With No Immediately Repeated Items  

Second Item

 A B C D

Fi
rs

t I
te

m

A 0 .135 .432 .432

B .135 0 .432 .432

C .231 .231 0 .538

D .231 .231 .538 0

Note—We had to modify the number of items of each type. Now there 
are 47 As, 47 Bs, 88 Cs, and 88 Ds.

Table 6C 
The Correct Item-Pair Frequency Table for a  

Randomized Sequence With No Immediately Repeated Items  

Second Item

 A B C D

Fi
rs

t I
te

m

A 0 6 20 21

B 6 0 21 20

C 20 21 0 47

D 21 20 47 0

Note—We had to modify the number of items of each type. Now there 
are 47 As, 47 Bs, 88 Cs, and 88 Ds.
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by the simple algorithm given here. Our technique relies 
on treating the item pairs in the item-pair frequency table 
as the elements of the sequence. We begin by randomly 
drawing an item pair on the basis of its overall probability 
of occurrence across the item-pair frequency table and 
begin the sequence to be generated with this item pair. 
We decrement the number for that particular item pair in 
the item-pair frequency table. The second element of that 
item pair tells us what the first element of the next item 
pair must be; that is, it tells us from what row of the item-
pair frequency table to pick the second item pair. We then 
pick the next item pair on the basis of the probabilities of 
occurrence of the item pairs in that row, add its second 
element to the list, decrement the number of that item pair 
in the table, and go to the row of the table corresponding to 
the second item in the item pair. We continue in this man-
ner until the item-pair frequency table is empty.

Consider the frequency table labeled Table 1C. To gen-
erate a list from this table, we randomly pick an item pair 
from the table on the basis of the frequencies of each item 
pair. Item pair BC, having a probability of 9/30 5 .3, gets 
picked. We begin our sequence S with this pair, so S 5 BC, 
and we decrement the number of BC item pairs by 1. This 
gives us Table 7A.

We then go to Row C. We have a 3/12 5 .25 chance of 
drawing a CA pair and a 9/12 5 .75 chance of drawing a 
CB pair. Say we draw a CB pair. We add the second item in 
this pair to S, so S 5 BCB, and we decrement the number 
of CB item pairs in the table, giving us Table 7B.

We return to Row B. There is a 3/11 chance of drawing 
a BA pair and an 8/11 chance of drawing a BC pair. We 
draw a BA pair, which means we add an A to S, giving us 
S 5 BCBA. We decrement by 1 the number of BA pairs 
in the table and go to Row A, where we have a .5 chance 
of drawing an AB pair and a .5 chance of drawing an AC 
pair, and so on.

And, in fact, no other randomization algorithm gets 
it right, either. With 45 As and Bs and 90 Cs and Ds, 
the standard randomization algorithm discussed at the 
beginning of this article produces an overall A:CD-pair 
ratio that is too low (0.87), and this ratio varies radically 
across the list, being 1.22 over the first fifth of the list and 
steadily decreasing to 0.45 in the final fifth. The distrib-
uted algorithm introduced earlier in this article produces 
an A:CD-pair ratio that is constant across the list but is 
also too low overall (about 0.88).

Is it possible to find a conditional probability transition 
table with some number of As, Bs, Cs, and Ds that does, 
in fact, satisfy the other constraints? The answer is yes, as 
we have shown in Tables 6B and 6C. How these correct 
conditional probabilities tables are created, however, is 
not obvious. We will now present a general method for the 
construction of transition tables for generating uniformly 
randomized lists with no repeated elements.

Direct Computation of Transition Tables
Starting with the desired item frequencies, how can one 

create the item-pair frequency table that will generate cor-
rectly randomized sequences with no repeated elements 
for any number of items and item types?

Assume we have N1, N2, N3, . . . , items of each type and 
a total of Ntotal items. We begin by calculating the table, M, 
of raw expected item-pair frequencies for each cell of the 
table, including for repeated elements. We remove the di-
agonal elements and put them in a separate vector, d. The 
values on the diagonal of M are set to 0.

nIJ 5 
N N

N
I J

total − 1
 5 expected number of transitions in 

	 cell (I, J ) of M, x  nxx 5 0.

dk 5 
N N

N
K K( )−

−
1

1total

 5 expected number of immediate 
	 repeats of kth item type.

The final item-pair frequency values (i.e., nIJ 
new) used to 

build the item-pair frequency table are given by the fol-
lowing equation:

	 nIJ 
new 5 nij(1 2 R) 1 nIRJ 1 nJRI,	 (3)

where

	

R R R
d
s

s n n n n

i
i

i
i

i

K K ij
i j

= =

= − =

∑

∑
∀ ≠

,

,

where

where2 aand n nK Kj
j

=
∀
∑ .

	
Equation 3 was used to generate Tables 4B and 6C. (See 
below for its implementation in an Excel spreadsheet.)

Generating Correctly Randomized Sequences
Once we have the correct item-pair frequency table, 

generating a correctly randomized sequence is straight-
forward. Either we can use the program from Remillard 
(2008), which provides a very efficient means of generat-
ing sequences once the correct item-pair frequency table 
(or, alternatively, the correct transitional probabilities 
table) is provided as input, or we can generate the sequence 

Table 7A 
Item-Pair Frequencies From Table 1C  

After One BC Item Pair Has Been Removed

Second Item

 A B C

Fi
rs

t I
te

m A 0 3 3

B 3 0 8

C 3 9 0
 

Table 7B 
Item-Pair Frequencies From Table 7A  

After One CB Item Pair Has Been Removed

Second Item

 A B C

Fi
rs

t I
te

m A 0 3 3

B 3 0 8

C 3 8 0
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for most experimentalists, list randomization is consid-
ered obvious and, as a result, they pay little attention to 
precisely how it is done. For this reason, most articles in-
clude little or, increasingly, no information on how item 
sequences were randomized. This is a practice that needs 
to change. We hope that the simple tools provided in the 
present article and our Excel files will contribute to this 
change and will help researchers produce correctly ran-
domized lists of items for their studies.
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Note

1. There are as many As as Bs and as many Cs as Ds. Consequently, 
when we refer to the ratio of the number of As to the number of CD pairs, 
which is designated as A:CD-pairs, we are also referring to all other 
ratios of the number of low-frequency items to the number of pairs of 
items made up of high-frequency items (i.e., A:DC-pairs, B:CD-pairs, 
and B:DC-pairs).

Simple Excel Tools for Generating  
Correctly Randomized Sequences

We have developed a set of simple tools in Excel that al-
lows experimentalists to generate all of the item-frequency 
and conditional probability tables mentioned in the pres-
ent article. These tools can be downloaded from http://
leadserv.u-bourgogne.fr/IMG/xls/TransitionMatrix.xls.

The user is required to enter only the desired number 
of items of each type (up to 10 item types) in the Tran-
sition Matrix worksheet. This worksheet generates the 
exact item-pair frequency table and transitional probabil-
ity table. The latter table can be used as input to Remil-
lard’s (2008) program to generate sequences. This first 
worksheet should run on any version of Excel on either a 
Mac or a PC. Two additional worksheets are also provided; 
these rely on macros and may therefore be more restricted 
in use (Excel macros unfortunately do not work in Excel 
2008 for the Mac, so an earlier version must be used on the 
Mac). Pressing Ctrl-r in the Rounding worksheet generates 
the appropriate integer-valued item-pair frequency table 
that corresponds to the exact item-pair frequency table 
produced in the Transition Matrix worksheet. This table 
can also serve as input to Remillard’s program to gener-
ate sequences. Pressing Ctrl-t in the Sequence Genera-
tion worksheet then generates randomized sequences, the 
number of which is set by the user, corresponding to the 
exact item-pair frequency table produced in the Rounding 
worksheet. Note that for large item-pair frequency tables, 
it is advisable to use the algorithm developed by Remil-
lard. Indeed, the Excel-based algorithm implemented in 
the Sequence Generation worksheet uses no advanced 
backtracking techniques and can, therefore, be slow.

Conclusion
Blais (2008) recently pointed out biases associated with 

randomization without replacement. These problems apply 
to all randomized lists, but they are particularly acute for 
short lists of items and, as such, are not of serious con-
cern for the points raised in the present article. Brysbaert 
(1991) and Castellan (1992) have also discussed various 
problems with randomizing lists, but the problems they 
discuss are related, in general, to computer implementa-
tions of randomization algorithms.

In the present article, we have shown that the use of 
standard randomization algorithms can lead to significant 
biases in the final randomized list. Particular care is called 
for in randomizing lists in which initial item frequencies 
are not equal and repeated items—especially immediately 
repeated item—are not allowed. Experimentalists very 
frequently encounter these situations.

One might reasonably wonder why some of these list 
randomization problems have gone largely unnoticed in 
the past. We believe that the answer lies in the fact that, 

(Continued on next page)



1240        French and Perruchet

APPENDIX

The motivation for using Equation 3 to explicitly describe how to build a correct item-pair frequency table 
is as follows. We assume that sequences wrap around. Starting with the desired item frequencies, we derive 
an initial item-pair frequency table of the expected numbers of each transition that includes the frequencies 
of transitions consisting of immediately repeated item pairs (e.g., AA, BB, CC, and DD). We then remove and 
randomly redistribute all immediately repeated items elsewhere in the list in such a way that no new repeats are 
created. The insertion of a repeated item elsewhere in the list will, of course, split the item pair into which the 
new item is inserted (i.e., there will be one less item pair of this type), thereby creating two new item pairs. For 
example, a B inserted into an AC pair will decrease the number of AC pairs by 1 and increase the number of AB 
and BC pairs by 1 each. By keeping track of the expected numbers of split transitions and additionally created 
transitions, we arrive at the appropriate item-pair frequency table.

We begin by filling in the “raw” item-pair frequency table, M. This table will include the frequencies of the 
repeated elements. The probability of an item pair XY, where X and Y are different, is 

	
p n

N

N

N

NIJ
I J( ) .=

−total total 1 	
The probability of an item pair XX is 

	
p n

N

N

N

NKK
K K( ) .=

−
−total total

1

1 	
We multiply p(nIJ) and p(nKK) by Ntotal to arrive at the expected number of items in each cell of the initial item-
pair frequency table. This gives 

	
n

N N

NIJ
I J=

−total 1
,
	

when I  J, and 

	
n

N N

NJJ
J J=

−
−

( )
,

1

1total 	
when I 5 J. We put the nJJ values (i.e., the numbers of each letter that will have to be redistributed elsewhere) 
into a vector, d, and then zero the diagonal of M. 

We will continue the explanation with a matrix with four item types. The generalization to m item types is 
straightforward. We have

	

 1 2 3 4
1 0 n12 n13 n14

2 n12 0 n23 n24

3 n13 n23 0 n34

4 n14 n24 n34 0

d 5 d1 d2 d3 d4 	
We will focus on one transition, 23. Only 1s and 4s can be inserted into a 23 transition without creating a 22 

or 33 double. We wish to see how many 1s would be inserted into 23.

	

 1 2 3 4
1 0 n12 n13 n14

2 n21 0 n23 n24

3 n31 n32 0 n34

4 n41 n42 n43 0
	

Ones can only be inserted into transitions in the shaded area. The total number of items in this area is 
n 2 2n1 where n1 is the number of 1s (Note: Si niK 5 Sj nKj), and n is the sum of all nij making up M. Thus 
[n23 /(n 2 2n1)]d1 1s will be inserted into 23. Similarly, [n23 /(n 2 2n4)]d4 4s will be inserted into 23. Alto-
gether, the number of 23 transitions will decrease by

	

n

n n
d

k
k

k

23

2 3 2−∀ ≠
∑

,
.

	
For simplicity, we let sk 5 n 2 2nk. So, the total number of 23 transitions decreases by

	

d
s nk

kk
23

2 3∀ ≠
∑

,
.
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APPENDIX (Continued)

We now count the additional number of 23 transitions created by inserting repeated items throughout M. A 
moment’s reflection will show that the only item insertions that can add to the number of 23 transitions are (1) 2 
inserted into transitions ending in 3 and (2) 3 inserted into transitions beginning with 2. These are the transitions 
shown below.

	

 1 2 3 4
1 0 n12 n13 n14

2 n21 0 n23 n24

3 n31 n32 0 n34

4 n41 n42 n43 0
	

By the same logic as above, the number of 3s inserted into 21 will be 

	

n

n n
d n

d
s

21

3
3 21

3

32−
= ,

	
and the number of 3s inserted into 24 will be

	

n

n n
d

d
s n24

3
3

3

3
242−

= .
	

Regrouping these terms, we have

	
( ) ,n n

d
s21 24

3

3
+

	
but n21 1 n24 5 n2 1 n23. In other words, the insertion of 3s will create (n2 2 n23)(d3 /s3) new 23s. A similar 
calculation shows that the insertion of 2s will create (n3 2 n23)(d2 /s2) new 23s.

To calculate the new value of n23, we add together all of these terms:

	
n n

d
s n n n

d
s nk

kk
23 23 23

2 3
2 23

3

3
3

new = − + − + −
∀ ≠
∑

,
( ) ( nn

d
s23

2

2
) .

	
This simplifies to

	
n n n

d
s n

d
s n

d
s

k

kk
23 23 23 2

3

3
3

2

2

new = − + +
∀
∑ .

	
If we let

	
R

d
s R RK

K

K
i

i
= = ∑and ,

	
the above equation simplifies to n23

new 5 n23(1 2 R) 1 n2R3 1 n3R2. Without loss of generality, we have

	 IJ  nIJ 
new 5 nIJ (1 2 R) 1 nIRJ 1 nJRI .

	

	 I5J  nIJ 
new 5 0
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