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Abstract 

Absolute pitch (AP) is the ability to identify and name an isolated tone by ear. The review 

begins with a brief overview of AP and the seeming bizarreness of its rarity. I then consider 

some reasons why AP learning may be inherently more difficult than typically assumed. 

First, the simplicity of what needs to be learned could be overstated if not taking into 

consideration the diversity of auditory stimuli (e.g., varying in timbre and octave) within each 

pitch class. A further reason for the rarity of AP could simply be the lack of extensive 

appropriate training. I then discuss implicit AP, which seems to be possessed by most, even 

non-musicians. Implicit AP refers to the ability to identify pitches absolutely at a more 

unconscious level but the inability to verbally label them. The review then considers growing 

evidence against the notion that AP is essentially unlearnable without the right genetic 

endowments and/or early music education. Procedures that might inhibit or facilitate AP 

learning are discussed. Incidental (i.e., non-intentional) learning may be particularly effective 

in training this difficult-to-acquire skill. A new multifactorial perspective of AP acquisition is 

presented along with some open questions for future research. 

 

Keywords: absolute pitch, perfect pitch, explicit learning, implicit learning, incidental 

learning 
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 Absolute pitch (AP) or perfect pitch is the ability to name isolated tones by ear, 

without the aid of an initial reference tone of known pitch (for reviews, see Bachem, 1955; 

Deutsch, 2013; Di Stefano & Spence, 2024; Levitin & Rogers, 2005; Loui, 2016; Moulton, 

2014; Takeuchi & Hulse, 1993; Ward, 1999). For instance, if I were to play a random note 

(e.g., on the piano), then an AP possessor would be able to identify and name the note (e.g., 

do♯ in fixed-do solfège or C♯ in the letter notation common in English-language speaking 

countries).1 Accuracy might not be perfect, but will tend to be very high for an AP possessor 

(with errors typically being only slight misses; i.e., semitone errors) and pitch identification is 

typically very rapid and automatic (Bermudez & Zatorre, 2009; Miyazaki, 1988, 1990; van 

Hedger et al., 2019; Wong, Lui, et al., 2020). Additional characteristics of AP will be 

discussed throughout this review, but the key point is that an AP possessor identifies notes 

about as effortlessly and automatically as anyone with normal colour vision perceives the 

colour of an object. An AP non-possessor would not be able to achieve the same. A relative 

pitch (RP) possessor could only identify a pitch correctly if first given a reference tone of 

known pitch to compare with the test tone, and typically more slowly (Levitin, 1994; Levitin 

& Rogers, 2005; Takeuchi & Hulse, 1993). AP ability is mysterious in some respects, most 

notably because of its rarity (e.g., Deutsch et al., 2006; Miyazaki et al., 2012). Tonal 

language speakers are more likely to have AP (Deutsch et al., 2004, 2006, 2013). But even 

amongst expert musicians, AP is quite uncommon (Baharloo et al., 1998; Gregersen et al., 

1999). The exact rate of AP in the general population is unclear. While a statistic of 1 in 

10,000 is frequently cited, no empirical evidence supports this. One review suggests that the 

rate is at least 4% in experienced musicians (Carden & Cline, 2019), but this is of course still 

rather low. Deutsch (2013) summarizes well why this is so bizarre (p. 142): 

 
1 Both fixed-do and letter notation (which are equivalent) will be used throughout this review. It is perhaps 

additionally worth noting that solfège syllables (do, ré, mi) are sometimes used in a non-absolute way in 

movable-do solfège, not to be discussed further in this review. 
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“…note naming involves choosing between only 12 possibilities—the 12 notes within 

the octave… Such a task should be trivial for musicians, who typically spend 

thousands of hours reading musical scores, playing the notes they read, and hearing 

the notes they play.” 

 Indeed, there are only 12 pitch classes in the chromatic scale, as illustrated in Figure 

1. The notion that it is nearly impossible, even for experienced musicians, to acquire the 

ability to name notes by ear may seem ridiculous on its face. Imagine if I were to suggest that 

it would be impossible for you to learn the meaning of 12 words from a foreign language or 

the keypresses for 12 of the letters on a computer keyboard. Imagine that I further told you 

that only those born with a rare genetic advantage and/or those that began learning before a 

critical age of, say, 7 years old would have any reasonable hope of learning such a small set 

of pairings. As will be discussed shortly, however, such limits have been proposed for the 

case of AP ability, at least according to the standard narrative. 

Figure 1 

The Pitch Class Circle 
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the standard narrative on AP, but then follow this with a discussion of some alternative 

interpretations of this difficulty. I will next consider an important distinction between 

verbalizable (i.e., normal) AP and implicit AP. This will be followed by some past attempts 

at training adult AP non-possessors to acquire AP, with varying degrees of success. In 

addition to encouraging results with explicit learning tasks, some recent results with 

incidental learning tasks, though preliminary, are equally encouraging. The review concludes 

with a new perspective on the acquisition of AP along with some open questions for future 

research. 

Standard Narrative Regarding the Rarity of Absolute Pitch 

 As hinted at above, two key factors have been suggested as strong predictors of 

eventual AP ability: genetics and early music learning. A role for genetics was first suggested 

by Bachem (1955). Although there are a limited number of studies, sample sizes are often 

small, and methodology is often suboptimal (e.g., relying on self-reports of AP ability), there 

is reasonable evidence for the notion that genetics play a role in the development of AP 

ability. For example, AP possessors are much more likely to have first-degree relatives who 

are (also) AP possessors than are AP non-possessors (Baharloo et al., 1998, 2000; Profita et 

al., 1988). Similarly, concordance rates between identical twins are much higher than those 

between non-identical twins (Theusch & Gitschier, 2011). There is also a bimodal 

distribution of pitch naming ability (i.e., present or absent, with little variability between the 

two extremes; Athos et al., 2007; but see, Bermudez & Zatorre, 2009). Further research has 

discovered genetic correlates to AP ability (Theusch et al., 2009). 

 Other research has suggested a key role for early music learning (Baharloo et al., 

1998; Chin, 2003; Deutsch et al., 2006; Miyazaki, 1988; Miyazaki & Ogawa, 2006; Sergeant, 

1969). In particular, it has been proposed that there is a critical period for acquiring pitch 
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naming ability. That is, if the individual does not start music training before some critical age, 

then eventual development of AP ability becomes nearly impossible. The critical period has 

been defined rather inconsistently from study to study, but is often considered to end 

somewhere around 7 years old (e.g., Miyazaki & Ogawa, 2006). In other domains, similar 

critical periods exist, for example for the learning of phonemic classes in the first year of life 

(Eimas, 1985) or the ability to obtain native level fluency in a foreign language (Kuhl, 2000; 

Newport, 1990; Russo et al., 2003; Vitouch, 2003). Research on AP ability has clearly 

indicated that the ability is much more common for early music learners (e.g., 40% of those 

who began music instruction before 4 years old in Baharloo et al., 1998), then becomes 

vanishingly rare for those that began music training later in life (e.g., <3% for those who 

began music training at 9 years old or older in the same study; see also, Deutsch et al., 2013). 

As will be discussed later, attempts at training AP ability are also more effective in children 

(e.g., Abraham, 1901; Bennedik, 1914; Crozier, 1997; Grebelnik, 1984; Miyazaki & Ogawa, 

2006; Russo et al., 2003; but see, Cohen & Baird, 1990; for a discussion, see Petran, 1932). 

Further research by Gervain et al. (2013) suggests that the critical period for learning AP 

might be reopened pharmacologically with valproate. They observed better learning of 6 of 

the 12 pitch classes (presented in three octaves) in a group receiving the drug, though effects 

were small. 

 Although the genetic and critical period hypotheses could hypothetically be treated as 

opposing theories, others have suggested that these two factors interact to determine the 

presence or absence of AP ability (e.g., Wilson et al., 2012; for reviews, see Moulton, 2014; 

Zatorre, 2003), which has seemingly become the received view on the rarity of AP. Critically, 

the general assumption seems to be that an adult who does not already possess AP and that is 

not blessed with a certain biological predisposition to learn AP is unlikely to attain true AP 

(for reviews, see Chin, 2003; Deutsch, 2013). Though the present article will certainly not 
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argue against a role of genetic predispositions or early learning, I will consider the idea that 

the above-mentioned general assumptions might be overstated. First, I will consider some 

other potential reasons why AP may be so rare. 

Alternative Reasons for the Rarity of Absolute Pitch Ability 

The Complexity of Pitch Classes 

 One possible explanation for the rarity of AP ability is the inherent difficulty of what 

needs to be learned to master it. There are at least some ways in which the apparent simplicity 

of the associations to learn to develop AP might often be grossly oversimplified. As 

mentioned above, it is often pointed out that there are “only” 12 associations to learn between 

notes and note names. However, it is more accurate to say that there are 12 complex sets of 

associations to learn, that is, between 12 pitch classes and 12 note names. A pitch class is a 

set of all pitches that share the same “color” or “quality”, typically referred to as “chroma” as 

an analogy to the perception of colour. More concretely, a pitch class is the collection of all 

notes that we give the same note name (e.g., “mi/E”). Even assuming that the instruments are 

always exactly tuned correctly (and in the same musical temperament), all notes belonging to 

the same pitch class are far from identical, as notes can vary in both octave and timbre. This 

is illustrated in Figure 2 with synthetic short attack tones (audio files in electronic 

supplementary materials). The spectrograms in the first and third column all belong to the 

same pitch class (C/do), whereas the second column corresponds to another pitch class 

(C♯/do♯), which may not seem self-evident visually. 
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Figure 2 

Spectrograms of Single Notes Varying in Pitch (Columns) and Timbre (Rows) 

 

Note. Audio files (created with Ableton Live and spectrally analyzed with Audacity) are 

available in the electronic supplementary materials for each note. 

 First, consider octave. Pitch perception is periodic. This means that as you increase 

the frequency of a root pitch (e.g., in semitone steps of 21/2 in even-tempered occidental 

music), each successive note (C4, C♯4, D4, etc.) will be perceived as having a different 

colour until the frequency has been doubled. A tone is perceived as having the same colour 

(i.e., belonging to the same pitch class) of another tone with twice (or half2) the frequency of 

the first (e.g., 220 Hz for A3 and 440 Hz for A4). This is referred to as octave equivalence 

and is illustrated in Figure 3 in a modified helix representation of the pitch class circle 

(Deutsch et al., 2008; Shepard, 1964, 1982). The circular base of the figure represents the 

chroma or pitch classes and the vertical axis represents pitch height, the position of a note on 

a continuous scale from the lowest to the highest note. Adjacent semitones are similar in pitch 

height but belong to different pitch classes. Octave equivalence can be perceived as a second 
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dimension of an auditory stimulus (as will be discussed shortly) and is represented by the 

closeness of pitches in the same pitch class along the vertical dimension (e.g., dashed lines). 

Of course, there are very clear reasons why, say, C3 and C4 correspond to the same pitch 

class, but the fundamental frequencies are quite different. This might lead to some confusion, 

perhaps especially for musically naïve participants. For example, moving from a D3 to a C4 

represents a significant increase in pitch but a “decrease” in pitch class. 

Figure 3 

A Helix Representation of the Relation Between Pitch Height and Chroma 

 

Note. Pitch height is continuous, increasing with each note. In contrast, pitch class (or 

chroma) is cyclical, with each pitch class repeating every 12 semitones (i.e., one revolution = 

1 octave). 

 Indeed, the similarity between two pitches belonging to the same pitch class is not 

always salient for listeners. For instance, when asked to rate the similarity between two 
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sequentially presented tones, non-musician participants do not rate two tones separated by 12 

semitones (i.e., separated by an octave and both belonging to the same pitch class) as being 

more “similar” than two tones separated by, say, 11 or 13 semitones (Allen, 1967; Kallman, 

1982). Rather, participants are more likely to determine similarity by closeness in pitch 

height (i.e., tones separated by 1 semitone are rated as very similar, tones separated by 2 

semitones a bit less, etc.). Some experienced musicians do demonstrate octave equivalence in 

this situation, though there is much variability between individual musicians. Granted, 

participants were asked to determine the “similarity” between the two tones in these studies 

rather than to detect pitch classes explicitly, which may have been an ambiguous instruction 

(e.g., they may have rated “similarity” on the basis of pitch height intentionally even though 

they are able to hear octave equivalence). Still, the “equivalence” of two tones separated by 

an octave is clearly not obvious to all listeners. 

 Globally, notes of the same pitch class from different octaves are not easily 

interchangeable, even for musicians. For instance, a random sequence of notes within a single 

octave is much easier to notate than a sequence of notes that jump back and forth between 

two octaves (Deutsch & Boulanger, 1984). Similarly, detection of musical intervals is harder 

if there is a separation of one or more octaves between the two pitches (Thurlow & Erchul, 

1977). As another example, a highly familiar song that is transformed to maintain the pitch 

classes but vary randomly the octave of each note becomes largely unrecognizable (Deutsch, 

1972). Readers with an instrument might try playing the song in Figure 4a to experience this 

directly (audio files are also available in the electronic supplementary materials). However, 

there are certainly ways for even the most musically naïve to “hear” octave equivalence. For 

instance, after playing the non-transformed version of the same song, presented in Figure 4b, 
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the transformed version in Figure 4a does become recognizable.3 In contrast, randomly 

varying notes up or down by only one scale degree makes the melody unrecognizable even 

when you know the melody that you are trying to detect, as in Figure 4c.4 

Figure 4 

Three Versions of the Same Melody 

 

Note. Audio files, created with MuseScore, are available in the electronic supplementary 

materials for each version. 

 Similarly, it is very easy to hear the “sameness” of two notes from the same pitch 

class (e.g., F4 and F5) played simultaneously, and this contrasts strongly with two notes of 

different pitch classes played together (e.g., E4 and F5). Yet other studies have observed 

octave equivalence in other ways. For example, if participants are asked to respond to certain 

groups of notes, but not others (i.e., a “go-nogo” task), in one octave, then there is a bias to 

respond to the same pitch classes of another octave in the same way in a non-reinforced 

 
3 For those who may be unfamiliar (e.g., non-native English speakers), the melody is a popular song for children 

called “Mary Had a Little Lamb”. 
4 As a minor detail, each individual note in Figures 4a and 4c has been (pseudo)randomly varied in exactly the 

same directions relative to the correct note the original melody (i.e., same, higher, or lower than the note in the 

original), except that in Figure 4a individual notes are transposed up or down an entire octave (e.g., the first note 

moves from E4 to E5), whereas the same notes are transposed in the same direction but only by one scale degree 

(e.g., E4 to F4) in Figure 4c. 

(a) Notes randomly octave shifted 

(b) Normal melody 

(c) Notes randomly pitch class shifted 
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transfer phase (Hoeschele et al., 2012). On the other hand, it seems that to obtain such effects, 

the use of pitch height (rather than pitch class) needs to be discouraged (Wagner et al., 2022; 

see also, Bongiovanni et al., 2023). Thus, perception of pitch height and pitch class are both 

possible, but pitch height is more salient. AP therefore does require more than just 12 simple 

associations. A learner must either learn to focus on the chroma (i.e., category learning) while 

ignoring pitch height or learn the pitch name for every note in every octave individually. The 

latter strategy is obviously less optimal. Within the 10 or so octaves of human hearing, this 

would represent more than 100 pitch-label associations to learn. 

 In addition to this (though perhaps more trivially), consider timbre. Timbre is the 

unique characteristics of the sound of individual instruments.5 Musical instruments typically 

do not produce pure sine waves, instead producing resonating frequencies (Krimphoff et al., 

1994). For example, a piano and flute can produce the same note with the same fundamental 

frequency, but the tone quality/colour will be different (see Figure 2). The two tones will 

sound similar, but not identical. These timbral variations are, however, probably less difficult 

for learners than octave equivalences (as discussed in further detail later), mostly because the 

fundamental frequency of a note is typically rather salient for most timbres (although some 

instruments produce undefined pitch, as is the case with non-pitched percussion instruments; 

see Eargle, 1995; Rossing, 2001; Rossing et al., 2004; Souza et al., 2015). Still, 

generalization across timbres requires learning to identify fundamental frequencies and not 

just the heard tone. In any case, the complications of multiple stimuli belonging to each pitch 

class makes it perhaps unreasonable to describe AP learning as something that should be 

easy. 

 
5 Note that I simplify slightly here by referring to differences between instruments, but there can also be 

differences in timbre within the same instrument (e.g., different bowing techniques on a violin, effects pedals on 

an electric guitar, or a limitless variability in timbre when using a MIDI instrument). 
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The Lack of Appropriate Training 

 Another possible (and starkly contrasting) explanation for the rarity of AP ability is 

that standard music instruction does not focus on extensive training of this ability. Auditory 

exercises are, of course, quite typical of conventional music training, but these exercises do 

not place a focus on learning to name pitches out of context. For instance, interval training 

involves listening to two notes (e.g., in isolation or in a known song) and learning to identify 

the change in pitch between the two (e.g., a perfect fifth, or 7 semitones, between the first and 

second “twinkle” in “Twinkle, Twinkle, Little Star”). This is quite clearly relative pitch 

training. Relative pitch is the ability to detect intervals between two notes. 

 Similarly, taking the above-cited example from Deutsch (2013), reading music 

notation, playing the notes on the instrument, then hearing the produced note does not involve 

direct AP training either. Specifically, the musician might know the name of the note 

represented in the notation, but they might not actively bring it to mind when learning to play 

a song. Relatedly, the produced note is heard, but the key focus in such training is between 

the musical symbols (i.e., not the names) and the procedural actions to execute. Furthermore, 

continued repetitions are more likely to rely on procedural repetition from memory rather 

than (re-)translation of the musical score. Abraham (1901) even goes so far as to state that 

(pp. 62; translated from original German): 

“In musical education everything is actually done to inhibit the development of an 

absolute awareness of tone, and next to nothing is done to instill it.” 

 Note that this does not necessarily indicate a failure of the music classroom. Indeed, 

while learning to play an instrument or to understand music theory, relative pitches are often 

more pertinent than absolute pitches. Some even argue that AP is potentially detrimental in 

the music classroom (e.g., Moulton, 2014; Weisman et al., 2006; for a discussion, see Di 

Stefano & Spence, 2024), as it may interfere with RP processing. For example, Miyazaki 
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(2004) observed that AP possessors have more difficulty with transposition than AP non-

possessors. Others view AP as an extraordinary gift and point to the disproportion number of 

world class musicians known to possess AP. Regardless, traditional instruction succeeds well 

in training a wide range of musical skills and knowledge. AP just happens not to be one of 

them. 

 For those who do wish to acquire AP, the question arises about how best to do so. 

Perhaps most optimally, AP training would involve repeated pairings of auditory stimuli and 

note names and nothing else (e.g., no musical notation, action execution on the instrument, or 

relative pitch comparison with known pitches). Indeed, as will be discussed later in this 

review, some recent research from our lab revealed negative impacts of musical notation on 

auditory pitch learning in a nonmusician sample (Iorio et al., 2024). Briefly, extraneous cues 

like this can cause cue competition (Kamin, 1969; Pavlov, 1927), whereby other associations 

are learned (e.g., between notes on the score and the corresponding fingerings on the 

instrument) instead of the associations between the auditory tones and note names. The 

above-mentioned AP-centric training is not typical of standard music training or practice. 

This fact alone may explain the rarity of AP. Indeed, unlike the analogy to colour naming 

(e.g., where children are repeatedly bombarded with colour names), association of heard 

pitches to the corresponding note names is not common in music listening or learning. If this 

latter explanation proves true, then AP learning in adulthood may be less hopeless than 

typically thought. Of course, the rarity of AP could be attributable to a complex interaction 

between all of the factors discussed thus far: the inherent difficulty of the associations to 

learn, the lack of extensive training of this particular skill, genetic advantages or 

disadvantages, and the benefits of early music training, a point to which this review will 

return later. 
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Implicit Absolute Pitch in Memory 

 Although it is clear that the ability to verbally name pitches is rather rare, some 

research suggests that this is not due to any sort of inherent limit of the human auditory 

system to detect pitches absolutely. In fact, pitch discrimination is not necessarily superior in 

AP possessors (Bachem, 1954; Burns & Campbell, 1994; Levitin, 2004). Further, work on 

implicit absolute pitch seems to indicate that most people, even non-musicians, already 

possess a sort of unconscious AP ability. For instance, both AP non-possessing musicians 

(Gußmack et al., 2006; Sergeant, 1969; Terhardt & Seewann, 1983; Terhardt & Ward, 1982; 

Vitouch & Gaugusch, 2000; see also, Vitouch, 2003) and non-musicians (Schellenberg & 

Trehub, 2003; Trehub et al., 2008) are often able to detect when a song is played either in the 

correct key or is transposed. Similarly, Smith and Schmuckler (2008) found that musically 

untrained AP non-possessors were able to detect the difference between the true dial tone and 

pitch-shifted versions of the dial tone,6 and Van Hedger et al. (2016) found similar results for 

the 1000 Hz sinewave tone commonly used to censor taboo words. Note that the above-

mentioned results should not be possible with relative pitch processing alone. For example, 

recognizing that a song has been transposed is impossible in this manner, as all the intervals 

remain unchanged after transposition. Recognition of familiar music itself is also very rapid 

and automatic, achievable with as little as 500 ms of exposure (Filipic et al., 2010; Huijgen et 

al., 2015; Tillmann et al., 2014; see also, Bella et al., 2003; Jagiello et al., 2019; Schellenberg 

et al., 1999; Schulkind et al., 2003). 

 Participants are further able to generate notes relatively correctly when, for example, 

humming or singing a familiar song (Levitin, 1994). Participants do not always produce the 

exactly correct pitch, but are often quite close, and such results do not take into consideration 

 
6 For readers of younger generations, the dial tone was an extremely familiar tone that was heard every time a 

fixed telephone was not connected to a call, including when initially picking up the phone receiver. 
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the fact that knowing the correct pitches and being able to sing accurately are, of course, not 

the same thing. As a further example of implicit AP coding, when we do sing a familiar song 

on multiple occasions, there is relatively little variability in the key in which the song is sung 

(Bergeson & Trehub, 2002; Halpern, 1989). Collectively, work on implicit AP memory 

suggests that the average listener may not have particular difficulty in identifying (or even 

producing) pitches absolutely, but rather with the verbal labelling of such pitches (Hsieh & 

Saberi, 2008; Levitin, 1994; Schellenberg & Trehub, 2003; Vanzella & Schellenberg, 2010). 

Again, this may be related to the fact that we have significant practice in hearing specific 

pitches produced in specific contexts, but much more limited practice associating verbal 

labels to said pitches. 

 In the two-component model of Levitin (1994; see also, Levitin & Rogers, 2005), it is 

argued that absolute pitch memory is quite common, whereas pitch labelling (i.e., associating 

a name to a pitch) is much less so. It is argued that pitch labelling requires a pitch template 

mapping the linguistic labels (i.e., note names) to pitches. Only AP possessors are said to 

acquire this template. And after acquiring it, pitch labels are automatically retrieved by heard 

musical notes (Levitin & Rogers, 2005). In other words, detecting pitches absolutely in 

implicit absolute pitch memory is not problematic for late learners, but verbally labelling 

them is. On the other hand, though clearly the case that AP possessors have learned the verbal 

labels for the pitches and that AP non-possessors have not, it seems unusual to propose that 

the latter group cannot learn said labels. Why? Because the (complex) musical stimuli that 

AP non-possessors can identify absolutely in implicit AP studies can and already are verbally 

labelled by AP non-possessors with their song names (or “dial tone” in the case of Smith & 

Schmuckler, 2008).7 It certainly does not seem to be the case that auditory pitch information 

 
7 Many of the studies mentioned above required recognition rather than song identification responses, but it is 

clearly the case that almost everyone (AP possessor or not) is capable of naming the songs that they hear. 
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is so fundamentally incompatible with verbal codes that associating tones to verbal labels is 

impossible. 

 In sum, there is good evidence for a sort of implicit AP in memory. Many or most 

participants can process pitches absolutely, but this absolute pitch perception is not linked to 

verbal labels. A further question is therefore whether participants are able to form the same 

sort of implicit (or even explicit) AP memory between pitches and the corresponding note 

names, as will be discussed in the following section. 

Learnability of Absolute Pitch 

Explicit Learning with Extended Training 

 Coherent with the notion that there is little hope of becoming an AP possessor for 

those who did not begin music instruction early are some early attempts at training adult AP 

non-possessors to strict levels of AP performance, which all failed. Often improvements are 

observed, but these improvements have varied from very small or non-significant (e.g., 

Gough, 1922; Heller & Auerbach, 1972; Meyer, 1899; Vianello & Evans, 1968; Wedell, 

1934; for reviews, see Takeuchi & Hulse, 1993; Ward, 1999; cf., Mull, 1925), to encouraging 

but well short of true AP accuracy (e.g., Cuddy, 1968; Lundin & Allen, 1962; Terman, 1965; 

Van Hedger et al., 2015). Most of this work has involved explicit learning tasks in which 

participants must guess the identity of a pitch, which is followed by feedback of the correct 

note name. Other similar tasks involve initial discrimination training for learning one 

reference pitch before training the rest (Brady, 1970; Cuddy, 1968). Coherent with the critical 

period hypothesis, similar work has revealed that children between three and six years old are 

able to achieve AP-like performance with this type of training (e.g., Abraham, 1901; 

Bennedik, 1914; Crozier, 1997; Grebelnik, 1984; Miyazaki & Ogawa, 2006; Russo et al., 

2003; but see, Cohen & Baird, 1990; for a discussion, see Petran, 1932). Indeed, results 
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suggest that infants begin life treating pitches absolutely (Saffran & Griepentrog, 2001) and 

shift towards RP processing with development. 

 However, some relatively more recent work is more optimistic, suggesting that AP 

may be learnable by at least some adults. For instance, Van Hedger et al. (2019) trained AP 

non-possessors with high working memory capacity (a factor found to be important in Van 

Hedger et al., 2015) for eight weeks and tested them with a range of eight timbres and seven 

octaves. The training itself involved several different tasks, all with accuracy feedback. In the 

simple speed task, participants had to detect a named reference note (white keys only) in a 

series of trials. Complex speed was the same but with a faster pace, timbral variability, and 

wider range. Accuracy training involved force-choice guessing of individual notes of all 12 

semitones. Hypercomplex speed replaced the first two in the second half of the experiment; 

the response window was shortened, the timbre range was expanded, and all 12 semitones 

were used as distracters. Name that key, also only in the second half of the experiment, was 

similar to accuracy training except participants had to detect the key signature of musical 

excerpts rather than individual notes. Most participants showed some improvements. Further, 

2 of 6 participants achieved AP-level performance at the end of training, though both already 

had elevated levels of performance before training (i.e., just shy of “true AP” levels). 

 In Wong, Lui, et al. (2020), participants similarly learned via gamified trial-and-error 

learning to identify progressively more and more tones in more and more timbres and 

octaves. The training lasted for 12 hours in their Experiment 1, 15 hours in Experiment 2, and 

40 hours (online) in Experiment 3. A small number of participants (6 of 43) across three 

experiments were able to learn all 12 semitones with at least 90% accuracy. A limitation of 

this study, similar to Van Hedger et al. (2019), is that the cut-off for inclusion in the study 

was rather liberal: greater than one semitone error in pre-test AP ability, which is exactly at 

the common cut-off to separate AP possessors and AP non-possessors. Thus, how much 
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participants actually improved is unclear. Participants were also tonal language speakers, 

which might facilitate AP learning (Deutsch et al., 2004, 2006, 2009). 

 Wong, Ngan, et al. (2020) addressed the latter limit of Wong, Lui, et al. (2020) by 

studying non-tonal language speakers. Participants trained the 12 chromatic pitches of one 

octave and timbre for 20 hours. They started with only three pitches, and an extra pitch was 

added after completing a phase with at least 90% accuracy. Of the 13 participants, 2 were 

able to learn all 12 pitches within the 20 hours of training. For these two participants, 

performance improved particularly rapidly in the first 1h training period. Globally, accuracy 

increased and mean absolute deviations decreased in the sample. As a caveat, training and 

testing involved no timbral or octave variability, so it is less clear whether participants were 

learning pitch classes, fundamental frequencies, or even just associations to specific auditory 

stimuli (i.e., pitch + timbre cues), a point to which I will return later in this review. 

Incidental Learning of Absolute Pitch 

 The research discussed in the previous section is encouraging as it suggests that 

improvements in pitch identification are possible with extended practice, and some AP non-

possessors may even be able to acquire AP. The extent to which learning could be accelerated 

(and potentially for more participants) with different learning procedures remains an open 

question. In that vein, some newer work has explored whether rapid improvements in pitch 

naming abilities are possible with an incidental learning procedure. Briefly, it is useful to 

highlight some of the key features of this type of learning approach that may make it 

particularly pertinent in the case of AP learning (e.g., in comparison to other approaches). 

 Incidental learning procedures involve non-intentional learning. In other words, 

participants are given a simple task (e.g., reading note names), but a hidden covariation is 

present in the task (e.g., non-target pitches that are predictive of target note names). 
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Participants are not instructed about the hidden regularity and are not given the goal to try to 

learn one, thereby making any learning incidental to the objective of the task. Learning of 

said regularities nevertheless occurs in a wide range of tasks, sometimes with, but often 

without, conscious awareness of what was learned.8 Incidental learning effects are extremely 

robust and easy to observe in a wide range of domains. In the music domain, much of this 

research is analogous to artificial grammar learning or sequence learning tasks (for a review, 

see Rohrmeier & Rebuschat, 2012). For example, participants have been found to 

incidentally learn the hidden “grammar” rules used to create melodies (Saffran et al., 1999, 

2000; Tillmann & Poulin-Charronnat, 2010). Similar research has found evidence for 

incidental learning of unfamiliar harmonies (Bly et al., 2009; Loui et al., 2009; Rohrmeier & 

Cross, 2009), sequences of timbres with identical pitches (Bigand et al., 1998; Hoch et al., 

2013; Tillmann & McAdams, 2004), and timing information, specifically, temporal 

sequences (Brandon et al., 2012; Prince et al., 2018; Salidis, 2001; Schultz et al., 2013; 

Tillmann et al., 2011). An incidental learning task more analogous to the AP application to be 

discussed shortly has also been successfully applied to the initial familiarization with 

sightreading materials by non-musicians (Iorio et al., 2023; Schmidt et al., 2023). 

 One key advantage of incidental learning procedures is that they produce very rapid 

learning, appearing after only a few repetitions of each stimulus pairing (in some cases, after 

a single presentation; Lewicki, 1985, 1986; Lewicki et al., 1992). This has been observed in 

sequence learning (Nissen & Bullemer, 1987), the Hebb digits task (Mckelvie, 1987), hidden 

covariation detection (Lewicki et al., 1988), and the colour-word contingency learning task 

(Lin & MacLeod, 2018; Schmidt et al., 2010; Schmidt & De Houwer, 2016; for reviews, see 

MacLeod, 2019; Schmidt, 2021a, 2021b), among others. Adding the goal to try to learn the 

 
8 A related concept is implicit learning, in which learning is incidental and the acquired knowledge is not 

verbalizable (Berry & Dienes, 1993; Cleeremans et al., 1998; Perruchet, 2019; Perruchet & Pacteau, 1990; 

Reber, 1967, 1989; Shanks, 2005). Of course, true AP is verbalizable, so fully implicit learning is perhaps less 

pertinent for the case of AP learning. 
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pairings (i.e., during the same task used to study incidental learning) can slightly improve 

learning in some cases (Destrebecqz, 2004; Schmidt & De Houwer, 2012), though this comes 

at the cost of speed. In other cases, more explicit forms of learning can be detrimental, such 

as when regularities are too complex or difficult to consciously learn (Berry & Broadbent, 

1988; Fletcher et al., 2005; Howard & Howard, 2001; Reber, 1976; Reber et al., 1980; Wulf 

et al., 1998). This is perhaps particularly pertinent to the case of learning AP, given the 

apparent difficultly of consciously learning said skill. Another advantage of incidental 

learning is that this form of learning produces more rapid and automatic effects on behaviour. 

For example, while both participants in an intentional and an incidental learning condition 

may learn artificial grammars, putting time pressure on participants often reveals advantages 

for incidental learning, both with musical (Bigand et al., 1998) and linguistic stimuli (Turner 

& Fischler, 1993). This is pertinent to the training of AP, as AP implies not only the ability to 

correctly identify pitches by ear, but also the ability to do so very rapidly and automatically 

(Bermudez & Zatorre, 2009; Miyazaki, 1988, 1990; van Hedger et al., 2019; Wong, Lui, et 

al., 2020). 

 In an initial set of studies applying incidental training to AP, Iorio et al. (2024) trained 

unselected non-musician participants with the seven notes of a C-Major scale in one octave. 

The goal was not to train true AP, strictly defined, but rather to determine whether (a) 

learning would be just as rapid as in all other incidental learning tasks, or (b) there is 

something fundamentally more difficult about auditory tone stimuli. On each trial, 

participants heard one of the seven pitches, and this was immediately followed by a note 

name presented in the middle of the screen. On the majority of the trials (90%), the note and 

note name matched (e.g., the note for “fa”/F followed by the note name “fa”), as illustrated in 

Table 1. Only rarely did the note and note name mismatch (e.g., the note for “sol”/G followed 

by the note name “do”, “ré”, “mi”, “fa”, “la”, or “si”). The task of participants was to ignore 
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the auditory stimulus (note) and identify and categorize the note name with a keypress (i.e., 

each note name was assigned a different key). Learning of pitch names was observed in a few 

different ways. First, in an explicit pitch identification task (i.e., forced choice guessing of the 

names of the tones in a test of AP), accuracy significantly improved. Second, the impact of 

learned contingencies was rather automatic: participants were faster to identify note names 

preceded by the matching (congruent) pitch than by a mismatching (incongruent) pitch. In 

other words, even though the goal of the task is to ignore the auditory stimulus, participants 

learn the names of the heard pitches to a sufficient level of automaticity that they cannot help 

but be biased by the interpretation of the pitch. 

Table 1 

Contingency Manipulation from Iorio et al. (2024) 

Note Name 
Auditory Stimulus 

do/C ré/D mi/E fa/F sol/G la/A si/B 

do 54 1 1 1 1 1 1 

ré 1 54 1 1 1 1 1 

mi 1 1 54 1 1 1 1 

fa 1 1 1 54 1 1 1 

sol 1 1 1 1 54 1 1 

la 1 1 1 1 1 54 1 

si 1 1 1 1 1 1 54 

Note. Numbers indicate the relative trial frequencies of tone-name pairs. Congruent pairings 

are presented much more frequently than incongruent pairings. 

 The response time effects in the learning phase are also interesting for another reason. 

As previously mentioned, one key characteristic of AP is that it is very rapid and automatic 

(Bermudez & Zatorre, 2009; Miyazaki, 1988, 1990; van Hedger et al., 2019; Wong, Lui, et 

al., 2020). An analogy is often drawn to colour perception: an AP possessor hears the pitch 

class as directly as anyone with normal colour vision sees a colour (e.g., Deutsch, 2013). 

Being able to identify pitches with high accuracy but only if taking a long time to determine 

the pitch labels (e.g., with some kind of relative pitch comparison strategy) would typically 
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not “count” as true AP. This automaticity has not only been measured in raw response times 

in an AP test phase, but also (analogous to Iorio et al., 2024) in auditory musical Stroop tasks 

(e.g., Akiva-Kabiri & Henik, 2012; Schulze et al., 2013; see also, Hamers & Lambert, 1972; 

Leboe & Mondor, 2007). For instance, Akiva-Kabiri & Henik (2012) asked AP possessors 

and non-possessors to read note names while ignoring an auditory tone. AP possessors were 

slower to read the note names when the tone was incongruent (e.g., the tone for do/C with the 

note name “sol”) rather than congruent (e.g., do/C with “do”). The same effect was not 

observed in AP non-possessors. Analogous to the colour-word Stroop effect (Stroop, 1935; 

for a review, see MacLeod, 1991), this result indicates that the notes are so strongly 

associated to note names in AP possessors that AP possessors cannot help but “translate” the 

auditory note stimulus into a note name, even though the task is to ignore the tones and read 

the note names. It is interesting that this same sort of automaticity is also observed in 

musically naïve participants after a brief training in Iorio et al. (2024) given how impossible 

it is supposed to be for adult non-possessors to acquire AP. 

 Incidentally, the same study of Iorio et al. (2024) also revealed that adding a second 

predictive cue, the note position on the musical staff, interfered with pitch learning. This is 

coherent with the previously mentioned notion that optimal AP training should focus only on 

the link between the auditory stimulus and note name. The negative effect of extraneous cues 

(e.g., note positions) can be explained by overshadowing (Pavlov, 1927). There are several 

different theories of overshadowing and related “cue competition” effects, such as blocking 

(Kaufman & Bolles, 1981; Mackintosh, 1975; Matzel et al., 1985; Miller & Witnauer, 2016; 

Pearce & Hall, 1980; Rescorla & Wagner, 1972; Sutherland & Mackintosh, 1971), but 

overshadowing is the observation that the learning of one predictive relationship (e.g., 

between note positions and note names) negatively impacts the learning of another predictive 

relationship (e.g., between pitches and note names) when the two predictive stimuli are 



IS ABSOLUTE PITCH LEARNABLE?  24 

 

presented together.9 

 AP non-possessor musicians also showed pre-post improvements in explicit pitch 

naming in another experiment of Iorio et al. (2024). This is interesting because these 

participants have already spent years learning music, hearing the notes whose note names that 

they know, yet have not acquired AP. This would seemingly suggest that these participants 

do not have a genetic advantage to acquire AP, yet comparable improvements were observed 

for these participants. In a third experiment, non-musicians showed significant retention in a 

surprise one-week follow-up test of AP (i.e., higher than pre-test and without substantial 

losses from immediate post-test). These data are presented in Figure 5 for a pure incidental 

learning group and for a second group given the secondary goal to try to deliberately learn the 

pitch-name associations. Such results clearly indicate that learning is not merely short-term. 

Alternative interpretations of these pitch learning effects in terms of a simple strategic use of 

the spatial compatibility between key order (left-to-right for ascending notes) and the pitch 

heights (i.e., low-to-high) were further ruled out with scrambled key orders in Experiment 2. 

 
9 A more classical example of overshadowing is an experiment where a rat is placed in a Skinner box and can 

avoid a foot shock (or receive a food reward) if it presses a lever at the appropriate time. Rats are perfectly able 

to learn that a lever press following a visual light cue or an auditory sound cue leads to reward (the typical 

control conditions), but often fail to learn about one of the two cues (e.g., the auditory cue) if both are always 

presented simultaneously (i.e., the light and the sound) during learning. 
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Figure 5 

Test Phase Results of Experiment 3 of Iorio et al. (2024) with Standard Error Bars 

 
Note. The dashed line indicates chance-level guessing. 

 In another series of ongoing studies, Henry et al. (2024) used a conceptually similar 

task, but with a few notable procedural changes. First, participants learned all 12 semitones of 

an octave, rather than just a subset of 7 (e.g., from the C Major scale, as in Iorio et al., 2024). 

Second, participants read the note names (i.e., rather than responding with a keypress). Third, 

notes were always congruent with the presented note name. During learning, automatic 

effects on behaviour were not measured.10 However, post-test accuracy (and response times) 

in explicit pitch identification significantly improved relative to pre-test accuracy (and 

response times). This was true for fully correct accuracy (i.e., only exactly correct responses 

are counted as correct), accuracy allowing for semitone errors, and mean absolute deviation 

between the correct and guessed responses. Interestingly, accuracy was still increased after a 

one-week delay in a surprise retest, similar to Iorio et al. (2024) but with all 12 pitches of an 

octave. 

 
10 This was impossible as there were no incongruent trials to compare with congruent trials as a measure of 

learning. 
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 Crucially, improvements (and retention) were not only observed in the above-

mentioned studies of Iorio et al. (2024) and Henry et al. (2024), but these improvement were 

observed after a very short learning phase of roughly 15 minutes. As previously mentioned, 

some encouraging results for the learnability of AP have been observed in extensive training 

studies (van Hedger et al., 2019; Wong, Lui, et al., 2020; Wong, Ngan, et al., 2020). Here, 

however, learning and automatization of pitch knowledge was extremely rapid, even when 

participants were musically naïve adults. Some participants even achieved AP level 

performance at the end of training (e.g., less the 1 semitone mean absolute error) despite 

chance-level pre-test scores. This was certainly not the case for all participants and other 

limitations of this work exist. For instance, extended training with these tasks would be useful 

to establish both (a) to what extent participants continue to improve with further training, and 

(b) what percentage of participants are able to eventually obtain high levels of performance. 

 Another question needing further exploration is the extent to which the above-

mentioned studies demonstrate true learning of pitch classes. It could alternatively be argued 

that participants are merely learning associations between note names and highly specific 

sounds (e.g., the 7 or 12 auditory stimuli used in a given experiment), or item-specific 

learning. True AP ability is more general. Although many AP possessors may find 

identification of pitches easier with certain timbres or octaves (Lockhead & Byrd, 1981; 

Marvin & Brinkman, 2000; Miyazaki, 1989; Schlemmer et al., 2005) and there also exist 

narrower versions of AP that are specific to a familiar instrument (i.e., instrument-specific 

AP; see Reymore & Hansen, 2020), AP is category-specific. That is, an AP possessor can 

identify all tones belonging to each pitch class. 

 More work is still needed, but some recent work is encouraging. Henry and Schmidt 

(in press) used the same contingency learning procedure as Iorio and colleagues (2024) 

except that two timbres (e.g., piano and harpsicord) were trained as context stimuli. A third 
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timbre (e.g., clarinet) was not trained: each pitch was presented equally often with all note 

names. Critically, the pitch identification learning trained with the context stimuli transferred 

to these latter transfer stimuli. Response times during the learning phase showed a learning 

effect (nearly indistinguishable from the context items), and explicit pitch identification after 

learning was increased also for the transfer stimuli, both as shown in Figure 6.11 Responses in 

the post-test phase were not only more accurate, but response times were also faster than in 

the pre-test phase (not presented in Figure 6), also indicative of automaticity. These results 

clearly indicate category-specific learning and not merely item-specific learning. This is 

coherent with the idea that participants are learning pitch classes or at least something 

independent of timbre. Further work with a larger set of stimuli would be welcome, however. 

Figure 6 

Learning Phase Response Times (Left) and Test Phase Percentage Correct Results (Right) of 

Henry and Schmidt (in press) with Standard Error Bars 

 
Note. The dashed line in the figure to the right indicates chance-level guessing. 

 
11 It might be noted from the figure that pre-test scores were above-chance guessing. Though the reason for this 

is unclear (e.g., perhaps indicating some undisclosed pre-existing knowledge of some participants or the use of a 

relative pitch strategy; for more on these possibilities, see Henry & Schmidt, in press), controlling for pre-test 

scores did not modify any of the results of the experiment. 
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 In conceptually similar (ongoing) work (Henry & Schmidt, 2024), we tested for 

transfer of learning from two trained octaves (e.g., octaves 3 and 4) to an untrained octave 

(e.g., octave 5) in both non-musicians and musicians. In this work, we again observed 

increased post-test scores in explicit pitch identification (i.e., relative to pre-test) and 

automatic effects on response times during learning for both the trained and untrained 

octaves. However, effects, though statistically significant, were numerically small. 

Interestingly, this was also the case for the trained stimuli. The greater difficulty in 

transferring learning across octaves (i.e., relative to transfer across timbres) is consistent with 

single pitch learning studies of Bongiovanni et al. (2023), in which significant but attenuated 

transfer across timbres was observed for a single pitch, but transfer to another octave was 

very weak. Collectively, these results suggest that learning specific to pitch height is easier 

than learning specific to pitch class, but pitch class learning is nevertheless possible. Still, 

given that pitch height is more salient than pitch class, the most effective training of pitch 

detection abilities might involve a task that discourages the use of pitch height cues (coherent 

with the previously mentioned work of Wagner et al., 2022). Future research might therefore 

aim to increase attention to chroma while dissuading focus on pitch heights, for example, 

with some form of octave equivalence training (for which there seems to be little or no 

research that the author is aware of) or by training with Shepard tones (Shepard, 1964, 1982) 

that are ambiguous in pitch height but clearly defined in pitch class. Alternatively (and less 

optimistically), it could be that the difficulty of perceiving pitch class and ignoring pitch 

height may be the reason that AP is rare and this difficulty may be unsurmountable by most. 

 Other work with a more intentional learning task of Van Hedger et al. (2015) is also 

relevant. Rapid learning was also observed in a single session of 180 trials in two studies. 

Participants learned the 12 piano semitones of the chromatic scale in one octave in a more 

explicit guessing-with-feedback procedure. As in the studies discussed above, improvements 
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were observed after training in an AP test phase. They also tested for generalization in a final 

test phase. This phase contained the original 12 piano tones, 12 piano tones from a higher 

octave (octave transfer), 12 guitar tones from the originally trained octave (timbral transfer), 

and 12 guitar tones from a lower octave (both octave and timbral transfer). Performance in 

this latter test was just below the conventional cut-off for statistical significance in 

Experiment 1, and just above in Experiment 2. This might suggest timbral and/or octave 

transfer, though the results were not clearcut and the four categories of tones were not tested 

separately. Further, the inclusion of the originally trained piano tones in the “generalization” 

test phase makes interpretation of these results unclear (i.e., because increased performance 

might be explained entirely by better performance for the trained tones).12 

 In summary, some recent research suggests that rapid improvements in pitch detection 

are possible with incidental learning procedures, and this acquired knowledge has automatic 

influences in behaviour (e.g., as indicated by response time effects during the learning 

phases). This learning is also not short-term, as effects are still observed after a retention 

interval. These results are coherent with the standard properties of implicit learning in other 

domains (Perruchet, 2008; Reber, 1992; Sun et al., 2007). Many questions remain 

unanswered, however. Whether participants are truly learning pitch classes (e.g., rather than 

just pitch heights) and how much improvement is possible with extended training is still not 

perfectly clear. At minimum, however, early results are encouraging. 

A New Perspective on Absolute Pitch 

 Taking together the discussions in the present review, we might consider a slight 

modification of the received view on the genesis of AP, as schematically represented in 

Figure 7. First, the difficulty of the associations to learn to master AP should not be 

 
12 See Henry and Schmidt (in press) for more on this. 
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understated. The wide diversity of stimuli belonging to each pitch class (e.g., with timbral 

variations and equivalence across octaves) makes for a difficult learning situation. The 

increased salience of pitch height cues over pitch class cues only adds to this difficulty. The 

learning of pitch classes therefore may be quite different than the common analogy to colour 

perception (see Di Stefano & Spence, 2024, for other critiques of this analogy). Learning 

associations between auditory musical inputs and verbal labels might therefore occur, but 

slowly. Exactly how rapidly learning occurs could be strongly influenced by the learning 

environment. That is, some tasks are probably better than others for promoting learning. 

Figure 7 

Schematic Representation of the Modulatory Influences of Genetics, Early Music Training, 

and Learning Environment on Pitch Identification Learning 

 

 Second, the extant data are sufficiently compelling to argue for a genetic contribution 

to AP. This should not be so surprising. Just as physical capacities (e.g., visual acuity) and 

psychological traits (e.g., working memory capacity, intelligence) vary from one person to 

another, variability in the natural capacity to learn AP surely exists. And, indeed, the long-

term learning studies that have shown promising results with non-trivial sample sizes have 

only found a small number of participants showing particularly rapid learning (van Hedger et 
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al., 2019; Wong, Lui, et al., 2020; Wong, Ngan, et al., 2020). Indeed, while the postulate of 

the current review is that AP might be learnable by much more individuals than usually 

imagined, there are surely many who cannot. The most obvious case of this is the deaf. Those 

with amusia are similarly probably incapable of learning AP. Amusia is the inability to 

consciously perceive and memorize pitches (for reviews, see Peretz, 2013; Peretz & Hyde, 

2003; Tillmann et al., 2015). Amusics have difficulty, for instance, recognizing familiar 

songs and detecting pitch changes within a sequence of notes (Peretz et al., 2003). Generally, 

they have lower pitch discrimination thresholds and ability to detect intervals (Foxton et al., 

2004; Jiang et al., 2013). It seems implausible that such participants could be trained to 

identify pitches absolutely, although there are some suggestions that implicit pitch perception 

might be preserved in amusics (e.g., Tillmann et al., 2007, 2014; for a review, see Tillmann et 

al., 2023). More globally, interindividual differences in pitch perception or memory could 

influence the learnability of AP. 

 Third, the learnability of AP might be particularly heightened early in development. 

As already discussed, similar critical periods exist for a range of other abilities (e.g., in early 

language learning). Heightened brain plasticity during early development (for a review, see 

Kolb & Gibb, 2011) certainly could make the learning of AP easier. Thus, it could be 

supposed that AP remains learnable at any age by some meaningful large percentage of the 

population, but that age of onset of musical training (similar to genetics) impacts the 

parameters of this learning, as discussed next. 

 In general, performance at a novel task tends to improve with practice in a lawlike 

manner in a wide range of tasks. This has often been referred to as the power law of practice, 

as performance improves in accordance with a power function (Grant & Logan, 1993; Logan, 

1988, 1990; Newell & Rosenbloom, 1981; cf., Heathcote et al., 2000; Myung et al., 2000). 

Concretely, improvements are rapid early on in learning (e.g., faster response times or an 
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increase in precision), followed by smaller and smaller improvements with increased training. 

One way to view this negatively accelerating function is that the more that one has already 

improved, the less room there is for further improvement. In the case of errors, the more the 

error rate has already decreased, the less it is possible to decrease errors further (e.g., it is 

impossible to have less than a 0% error rate). This can be represented with the formula: a + 

bN-c, where a is the asymptote to which performance improves with infinite practice (i.e., the 

lowest error a given participant could ever expect to have), b is difference between initial 

errors and asymptotic responding (i.e., the amount of improvement theoretically possible for 

the participant), and c is a learning rate determining how quickly the participant improves. 

 One key question is whether late music learning and/or the absence of a genetic 

predisposition impacts the asymptote of pitch identification ability or the learning rate. That 

is, are all or most people able to attain true AP, only at a much slower rate than someone who 

begins learning music at a younger age and/or has a better genetic predisposition (i.e., lower 

learning rate, but same asymptote)? Or is it the case that the maximum level of performance 

(e.g., with infinite practice) shrinks with age and/or a less advantageous genetic 

predisposition (i.e., lower asymptote, but same learning rate)? Figure 8 illustrates these two 

possibilities in simulated mean absolute deviation data (i.e., the mean difference between the 

guessed note and correct response in semitones).13 At the start of training, pitch identification 

is at chance (pure guessing) and a score of zero would indicate errorless pitch naming. With 

variations in the asymptote of pitch identification but not learning rate (Figure 8a), some 

(perhaps most) participants will never achieve AP by a strict standard (e.g., less than 1 

semitone error, indicated by the dashed line) even with infinite practice. If genetics and/or 

early music training affect the a (asymptote) parameter, then this may be the true situation. In 

 
13 Here, the simulated performance applies the same above-mentioned power function and assumes that 

everyone begins at chance guessing (3), such that b = 3 – a. The figure shows the results with variations in the 

other two parameters. 
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contrast, if the asymptote is the same (or universally low) for all participants, but the learning 

rate, c, varies, then everyone (or most) could achieve AP, only it may take some much longer 

than others (Figure 8b). The type of training (i.e., task environment) may similarly affect 

either the asymptote or learning rate. For instance, a task that better focuses the attention of 

participants on pitch classes rather than pitch heights might accelerate the rate of learning, c, 

only and not help the participant to achieve greater accuracy, a, with continued practice 

relative to training that focuses on pitch heights. Alternatively, training based on pitch height 

might fundamentally limit how much a participant can improve and switching to a learning 

strategy focused on pitch classes might help to overcome this limit (i.e., decrease the 

asymptote). 
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Figure 8 

How Modulations of Asymptote and Learning Rate Would Affect AP Learning Following the 

Power Law of Practice 

(a) Same learning rate, different asymptote 

  

(b) Same asymptote, different learning rate 

 

Note. The asymptote, a, is varied in the top figure, whereas the learning rate, c, is varied in 

the bottom figure. The improvement possible, b, is fixed at 3 – a. Scores below the dashed 

line would indicate AP-level performance. 

 More work regarding the task environment is desirable. Indeed, it is barely 
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exaggerating to say that there are almost as many learning procedures as there are studies on 

long-term training of AP. For instance, one early distinction was between completely random 

trial-and-error learning versus a task in which a reference tone (e.g., C4) is initially learned, 

as previously discussed. The latter of these two strategies has been suggested as potentially 

superior. Of the limited number of studies that have directly compared these two approaches, 

however, results were mixed (Cuddy, 1968; Gough, 1922; cf., Heller & Auerbach, 1972) and 

sample sizes were not large enough to make the comparisons particularly meaningful. 

Whether learning an initial “anchor” pitch is actually desirable is therefore unclear. Indeed, 

an argument against such a strategy might be that it could shift focus to relative pitch 

processing rather than absolute pitch processing. 

 Similarly, the study of Van Hedger et al. (2019) included five different training tasks, 

as discussed above. Which of these is most effective was not tested, nor was the potential 

usefulness of combining several tasks into one training regimen. As another example, Wong, 

Ngan, et al. (2020) increased training of tones (and surrounding tones) that were the most 

misidentified in previous blocks to aid learners with tones that posed the greatest difficulties. 

However, there was no control group to test the usefulness of this procedural detail. Many of 

these modifications of the learning procedure in these studies do seem plausibly useful, but 

verification of this would be pertinent for determining optimal learning conditions. 

 The pertinence of systematically testing different learning procedures is highlighted 

by some (perhaps) unintuitive recent results from our lab. For example, Wong, Lui, et al. 

(2020) and Wong, Ngan, et al. (2020) started with a small number of tones to learn and then 

incremented this number as accuracy improved. Though this seems reasonable, a 

conceptually-related manipulation in our lab actually diminished learning (Henry et al., 

2024). In particular, participants either learned all 12 semitones of an octave at once or in 

subblocks containing only 4 adjacent tones (e.g., do/C to ré♯/D♯ in one block, then mi/E to 
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sol/G in the next, etc.). The idea was that the latter manipulation might reduce cognitive load 

and help participants to learn smaller sets of tones at a time. While both groups did improve, 

performance was notably worse in the latter group, contrary to initial hypotheses. 

 Relatedly, the use of supplementary music notation cues in Iorio et al. (2024) could 

have been hypothesized to aid pitch learning, but the reverse was true (as previously 

discussed). In short, more systematic between-group comparisons seem pertinent to 

determine optimum learning conditions. This is not always easy to do with time-consuming 

long-term learning studies, but shorter-term learning studies may be one way to assess such 

factors more feasibly. It will also be important to determine not only which tasks provoke the 

fastest learning, but also which tasks produce the most generalization to untrained stimuli 

(e.g., to untrained octaves or timbres). Such studies are particularly pertinent if we take 

seriously the possibility that AP might be learnable by most, but that it is also hard and time 

consuming for many (e.g., those without a genetic advantage and/or early music learning). 

The use of suboptimal training procedures does not, of course, assess this possibility fairly. 

Discovering the most optimal conditions for improving pitch detection abilities may therefore 

allow us to determine how learnable AP is and for what percentage of the population. 

Conclusion 

 In sum, learning AP is deceptively more difficult than it seems like it should be. The 

standard narrative is that acquisition of AP requires some interaction between a genetic 

predisposition for acquiring AP and early music learning during some critical period. While 

there is little doubt that both of these factors are important in AP skill acquisition, at least two 

other factors may explain the rarity of AP. First, the regularities to learn are perhaps 

inherently difficult given the wide octave and timbral variations within each pitch class. 

Second, even the most skilled musicians are unlikely to spend significant time with the right 
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type of training procedure to actually learn to detect pitches absolutely. Another possibility is 

therefore that AP does remain learnable by adult AP non-possessors, but merely requires 

significant practice and in the right learning environment. Some recent results seem 

encouraging, but there is still a long way to go. Of course, the “holy grail” of research on the 

learnability of AP would be a training regime that can effectively train all or most AP non-

possessor adults to obtain strict levels of AP performance. This has yet to be observed. The 

main hope of the present review, however, is to indicate some of the reasons why this might 

be the case and why hope may remain. 
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