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Abstract  
At the earliest ages of development, perceptual 
maturation is generally considered as a functional 
constraint to recognize or categorize the stimuli of the 
environment. However, using a computer simulation 
of retinal development using Gabor wavelets to 
simulate the output of the V1 complex cells (Jones & 
Palmer, 1987), we showed that reducing the range of 
the spatial frequencies from the retinal map to V1 
decreases the variance distribution within a category. 
The consequence of this is to decrease the difference 
between two exemplars of the same category, but to 
increase the difference between exemplars from two 
different categories. These results show that reduced 
perceptual acuity produces an advantage for 
differentiating basic-level categories. Finally, we 
show that the present simulations using Gabor-filtered 
input instead of feature-based input coding provide a 
pattern of statistical data convergent with previously 
published results in infant categorization (e.g., 
Mareschal & French, 1997; Mareschal et al, 2000; 
French et al, 2001).  
 

Background  
This paper builds on earlier work by Quinn, Eimas, 
and Rosenkrantz (1993), Mareschal and French 
(1997), Mareschal, French, and Quinn (2000) and 
French, Mermillod, Quinn, and Mareschal (2001). 
Quinn et al. (1993) reported the following 
categorization asymmetry. Infants familiarized with a 
number of exemplars of cats show significantly 
increased interest when subsequently tested on an 
exemplar of a novel dog compared to a novel cat. 
Howeve r, if the infants are first familiarized with 
images of dogs and then tested on a novel dog and a 
novel cat, there is no significant difference in interest 
between the two test stimuli. Mareschal and French 
(1997) and Mareschal et al. (2000) attributed this to 
the greater variance of the “dog” stimuli set compared 
to the “cat” stimuli set, the interpretation being that 
the Dog category largely subsumed the Cat category. 
Thus, an infant familiarized on the less variable 
category, Cat, would, in general, view  an exemplar of 

a dog as a novel stimulus, whereas an infant 
familiarized on the more variable category, Dog, 
would tend to perceive a cat exemplar as simply 
belonging to the already -familiar Dog category. This, 
we claimed, explained the asymmetric levels of 
attention that Quinn et al. (1993) had observed. To 
further test this hypothesis, French et al. (2001) 
artificially reversed the inclusion relationship by 
carefully selecting breeds of dogs that were relatively 
similar (i.e., low variance) and highly variable breeds 
of cats. The connectionist computer model predicted, 
and the experimental results with infants subsequently 
confirmed (French et al., 2001), a reversal in the 
categorization asymmetry observed by Quinn et al. 
(1993). 
 However, one outstanding question remained. 
Even though, intuitively, the variability of the Cat 
category appears to be less than that of the Dog 
category, how could one be sure of this in any 
quantifiable way? Mareschal and French (1997) and 
Mareschal et al. (2000) handled this as follows. They 
originally selected ten features common to both cats 
and dogs (head length, head width, eye separation, ear 
separation, ear length, nose length, nose width, leg 
length, vertical extent, and horizontal extent) and 
measured the values associated with these features for 
each of the photos of the 18 Cat exemplars and 18 
Dog exemplars used in their experiments. Even 
though this choice of features was based on 
experimental data where infants typically look at the 
head and face region of the stimulus when they 
observe an animal (Quinn & Eimas, 1996; Spencer, 
Quinn, Johnson, & Karmiloff -Smith, 1997), how 
could we be sure that the set of perceptual features 
that we had chosen corresponded to those features to 
which the infants were actually attending? Further, 
the claim was that at 3-4 months of age infants were 
not making use of previously acquired perceptual 
information (i.e., prior categorical knowledge of dogs 
or cats or, for that matter, ears, noses, legs, etc.); 
rather, they were simply relying on statistical pattern 
recognition. Under these circumstances, using a set of 
measurements of specific high -level perceptual 
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features to characterize the input seemed, if not 

 

                                            
  
 
Figure 1: Transformation of the original image into a spatial-frequency map
 

 

                                        
 

 
Figure 2. Once we have the map of spatial frequencies, we “cover” this map with spatial-frequency ovals along 
various orientations of the image. (Each of the ovals are normalized to have approximately the same energy.) 
 
necessarily incorrect, at least somewhat inappropriate. 
 We therefore decided to attempt to examine this 
problem in a more neurobiologically plausible 
manner, one which sidestepped the difficulties 
inherent in selecting and measuring various 
perceptual features of the cat and dog stimuli.  The 
dog/cat stimuli used in the simulations reported in this 
paper were those used in French et al. (2001), all of 
which had been normalized to have approximately the 
same size. 
 

Organization of the present paper 
We will attempt to answer two questions in the 
present paper.   
 The first is: Can we avoid the use of explicit 
feature coding in our autoencoder model of infant 
categorization and replace this coding with Gabor-
filtered input known to have a neurophysiological 
counterpart in the infant visual system?  We will 
show that this can, indeed, be done successfully.  
 The second issue that we will address starts from 
the well-known fact that the 3-4 month old infant 
visual system is not sensitive to high spatial frequency 
information (Banks & Salapatek, 1981; Dobson & 
Teller, 1978). However, instead of this being a 
disadvantage for the infant, we will show that, 
somewhat counter-intuitively, this low visual acuity is 

actually an advantage in learning basic-level 
categories. The claim is that high spatial frequency 
information in the input signal produces an 
“information overload” in the infant cognitive system, 
adding information that is not necessary for correct 
categorization but that must, nonetheless, still be 
processed. In other words, when the infant is 
attempting to learn basic-level categories, high spatial 
frequency information in the input is very much like 
noise (Turkewitz & Kenny, 1982; Turkewitz & 
Kenny, 1985) and, as such, the less there is, the better. 
 

Spatial frequency maps  
It is well known that different columns in V1 are 
sensitive to different ranges of spatial frequencies (De 
Valois & De Valois, 1988; Tootell, Silverman, & De 
Valois, 1981). A scene reconstructed from only low 
spatial frequency information (i.e., with fine details 
blurred out) appears to us to be blurry. On the other 
hand, an image composed of high spatial frequencies 
would show only the fine details and would have no 
global perspective (rather like seeing many individual 
trees, but having no sense of the global entity, a 
forest). In any case, in order to have an optimal 
perception of a scene, we need the entire range of 
spatial frequencies. Therefore, by means of a 2D 

low freq. high freq. 
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Fourier transform, we first decomposed each of the 
images in the stimulus set into its component spatial 
frequencies and plotted them on a spatial frequency 
map (see Figure 1). 
 We then covered the frequency diagram with a 
“flower-petal” arrangement of 26 oval spatial 
frequency areas (“filters”) corresponding to various 
orientations emanating from the center of the spatial-
frequency diagram (Figure 2). Gabor functions were 
used to simulate the 2D spatial and spectral structure 
of simple cells in visual primary cortex. (Jones & 
Palmer, 1987; Jones, Stepnowski, & Palmer, 1987). 
The smaller petals near the center of the map 
encompass the low frequencies, while the larger ovals 
further from the center group toget her high spatial 
frequencies. For each of these 26 filters, we calculate 
an “energy” value based on the local energy spectra, 
thereby simulating the activity of V1 complex cells 
(Sakaï & Tanaka, 1999). This value determines the 
importance of that particular filter. If there are many 
spatial-frequency points that fall in a particular oval, 
it is given a high energy value; few points in a 
particular oval mean a low energy value. 

Recall that in prior experiments and simulations 
(Mareschal et al., 2000; French et al., 2001), the 
dog/cat stimuli were characterized by a vector of ten 
values, with each value corresponding to a particular 
“high -level” feature. Now, instead of using ten 
features, we characterize each of the images by a 
vector of 26 values, each of which corresponds to the 
weighting of a group of spatial frequencies along 
various orientations of the image. 
 

Visual acuity in infants 
We know that the visual acuity in infants is not the 
same as that of adults (Banks & Salapatek, 1981; 
Dobson & Teller, 1978). In particular, infants do 
not perceive high -spatial frequencies (i.e., fine 
details), or perceive them only poorly. Certain authors 
(Turkewitz & Kenny, 1982; Turkewitz & Kenny, 
1985) have claimed that, rather than being a problem, 
this reduced visual acuity may actually improve 
perceptual efficiency by eliminating the “information 
overload” caused by too many extraneous fine details 
likely to overwhelm their cognitive system. An 
implication is that basic-level category learning may 
be facilitated by red uced visual acuity.  

In both of the simulations below we removed 
most of the high spatial frequencies from the input 
given to the autoencoder network that was used in 
Mareschal and French (1997), Mareschal et al. 
(2000), and French et al. (2001). This was done by 
weighting the contribution of each of the spatial 
frequencies according to a normal distribution (with 
the low spatial frequencies at the center) and cutting 
off all spatial frequencies above 7.1 cycles/degree. 
The spatial frequencies are Gaussian-filtered in such a 
way that spatial frequencies above 3-4 cycles/degree 
contribute very little to the input vector associated 

with each image; the cut-off of 7.1 cycles/degree 
completely removes the highest spatial frequencies. 
 

Overview of the simulations  
The 26-16-26 autoencoder network used in the two 
simulations presented in this paper is based on a 
simple encode-compare-adjust principle (Sokolov, 
1963; Charlesworth, 1969; Cohen, 1973): When an 
infant sees a perceptual stimulus, this stimulus is 
encoded as an internal representation, which is 
continually compared to the external stimulus and 
adjusted to match it. As long as there is a significantly 
large discrepancy between the internal representation 
and the external stimulus, the infant continues to look 
at the external stimulus. As this discrepancy falls, the 
infant becomes less interested in the external 
stimulus. In the autoencoder model, this is equivalent 
to the network’s correctly generalizing on output to 
match the network input (i.e., if the error on each of 
the 26 outputs is less than 0.5). In particular, we will 
use this criterion of generalization to measure the 
network performance on the category-learning task in 
Simulation 2. 

In the simulations reported here we hope to 
establish two claims – namely:  

i)  Simulation 1: that the use of a vector of 26 
weighted spatial-frequency values, as described 
above, does, indeed, produce autencoder 
network results that are similar to those 
produced by infants tested on the same images 
and 

ii) Simulation 2: that the reduced visual acuity 
produced by largely eliminating high-spatial 
frequency information from the input (i.e., 
“blurry” vision) actually significantly improves  
the network’s ability to categorize the images 
presented to it. 

 
Simulation 1: The ade quacy of Gabor-

filtered spatial-frequency input 
 
In the first simulation we used the dog/cat stimulus 
set used in French et al. (2001). These authors used an 
encoding technique developed in Mareschal and 
French (1997) and Mareschal et al. (2000) in which 
10 features of the animal images were measured and 
used as input to a 10-8-10 autoassociative network. 
Using feature-based input to this autencoder, we 
obtained categorization results that qualitatively 
matched experimental data with infants.  In contrast, 
in the present simulation, we decomposed each image 
into a vector of values consisting of the energy values 
from each Gabor filter for a given orientation and 
spatial frequency.  These values correspond, at least 
approximately, to what V1 neurons are known to 
“perceive.”  

Each value of the 26-element vector represents an 
“energy” level associated with that particular spatial 
frequency. For this simulation, frequencies above 3-4 
cycles per degree of visual arc are given a very low 
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energy value (very high frequencies, i.e., those above 
7.1 cycles/degree are simply removed), which means 
that they contribute very little to the overall input 
vector (i.e., they contribute very little to the overall 
characterization of the image).  The removal of this 
high spatial-frequency information was done to 
simulate the reduced visual acuity of 3-4 month old 
infants (Courage & Adams, 1995).  
 The simulation reported here was done on a 
standard 26-16-26 feedforward backpropagation 
autoencoder network (learning rate: 0.1, momentum: 
0.9, Fahlman offset: 0.1). The stimulus set and the 
training regime was identical to that used in French et 
al. (2001). (It is important to recall that in French et 
al.,  2001, the Dog stimuli were selected to be the less 
varied category, while the exemplars making up the 
Cat category were chosen to be considerably more 
varied than the dogs.)  
 Networks were trained in batches of 2 patterns 
for a maximum of 250 epochs. This simulated 
familiarization with pairs of pictures for a fixed 
period before being presented with a new 
familiarization pair. All results were averaged over 
100 runs.  
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Figure 3a: Network generalization errors on novel 
cats/dog exemplars as a function of familiarization 
category. 
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Figure 3b: Corresponding results for 3-4 month old 
infants 

 
Figure 3a shows the model’s generalization error 

to novel exemplars of cats and dogs as a function of 
whether they were trained on cats (the broad 
category) or on dogs (the narrow category). Networks 
trained (i.e., familiarized) with cats show very little 
difference in error (hence predict little difference in 

infant looking times) when tested with a novel cat or a 
dog. In contrast, networks originally trained with dogs 
show significantly more error (F(1, 198)=13.4 
p<0.0005) when tested with a novel cat than when 
tested with a novel dog (suggesting a preference for 
looking at a novel cat vs. a novel dog). Figure 3b 
shows the corresponding attentional asymmetry in 3-4 
month old infants, as reported in French et al. (2001).  
 These simulation results using Gabor-filtered 
spatial frequency data allow us to conclude that the 
use of this type of spatial frequency data produces a 
reasonable fit to data. Most importantly, this result 
allows us to circumvent the thorny issue of using a 
particular set of “high -level” feature measurements 
(ear length, eye separation, etc.) to characterize the 
images used in the simulations. 
 

Simulation 2. Improved categorization 
with reduced visual acuity 

 
Does the autoencoder model of infant categorization 
(Mareschal & French, 1997; Mareschal et al., 2000) 
show improved categorization performance (at least 
on the dog/cat basic-level category images used in 
French et al., 2001) when “reduced acuity” input is 
used compared to “full acuity” input? The answer is 
that categorization performance is, indeed, enhanced, 
as we will show below. 
 To reiterate, the key idea of this simulation, 
which at first blush seems rather counter-intuitive: 
categorization performance for basic-level categories 
(Rosch et al., 1976) should be better without high 
spatial frequency information. This information is 
rather akin to noise in the input since, while it does 
indeed add information to the signal, it is not needed 
for accurate basic-level categorization. This 
extraneous information thus makes it more difficult 
(for the infant or for the network) to make use of the 
lower spatial frequency information that is, in fact, 
essential to basic-level categorization. 

We used the same network as in Simulation 1, 
with an identical parameter set. We first ran the 
network (100 independent runs) with input data that 
contained all of the spatial-frequency information in 
the images. We then ran the network again (100 
independent runs) with input data from which most of 
the high -spatial frequency information had been 
removed, as described above. The network was 
trained for 250 epochs on the training stimuli, as in 
Simulation 1. 

As can be seen in Figure 4, whether the network 
was trained on Cats or Dogs, whether it was tested on 
novel dogs or novel cats, its categorization 
performance is significantly poorer when the input 
signal also contains high spatial frequency 
information compared to input with the high spatial 
frequencies removed.  

It is also important to note that in the reduced 
visual acuity condition, we continue to see a 
significant difference in error (corresponding to
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Figure 4. More information is not always better 
information, at least for basic-level categorization. 
The addition of high spatial frequency information 
makes correct basic-level categorization more 
difficult for the network. 
 
attention in infants) when the network is trained first 
on dogs (in these experiments, the narrow category) 
and then sees a new cat, compared to when the 
network is first trained on cats (the broad category) 
and then sees a new dog.  
 

Basic-level categories and incrementally 
increasing cognitive load 

It is important to note that reduced acuity should 
improve categorization learning in the case of basic-
level categories, but not subordinate-level categories. 
To see why this would be true we need to refer to 
Rosch et al.’s (1976) definition of “basic-level” 
categories. This level of categorization is the level for 
which the ratio of between-category variance to 
within-category variance is the highest. In other 
words, between-category variance is high with respect 
to within-category variance, which is generally 
relatively low. Within-category variance increases as 
fine-grained details of category exemplars increase. 
But these finer details are revealed only by the high 
spatial frequencies. For this reason, a decreased visual 
acuity that consists of partially or completely 
removing high-spatial frequency information, will 
decrease within-category variance and leave between-
category variance largely unchanged. This would 
improve the learning of basic level categories, but 
would make it difficult, if not impossible, for 3-4 
month old infants to learn categories that depend on 
high spatial frequency information.  This applies, in 
particular, to subordinate-level categories.  

Having already learned a certain number of 
basic-level categories under conditions of reduced 
visual acuity, when the high spatial frequency 

apparatus does begin to come on-line at around 7 to 8 
months of age (Kellman & Arterberry, 1998), the 
infants will be in a better position to then do more 
refined (i.e., subordinate-level) category learning. 
Thus, rather than having to confront all of the 
information associated with a particular category at 
once, the limitations of visual acuity of the infants’ 
immature visual system first helps the infant to 
distinguish broader categories.  Once these have been 
learned (or partially learned), then their 
visual/cognitive apparatus is then ready to build on 
this knowledge by incorporating the fine-grained 
details, perceived through high spatial frequency 
perception, that characterize subordinate expert -level 
categorization. The overall results of the simulations 
are thus consistent with a differentiation-driven view 
of early category development (Quinn & Johnson, 
1997, 2000).  

Furthermore, these results are entirely consistent 
with Archambault, Gosselin, & Schyns (2000), who 
showed that basic-level categorization seems to be 
more resistant to changes in viewing distances than 
that of subordinate-level categorization. This is 
because of the fact that as an object recedes from the 
viewer, information about details (i.e., high spatial 
frequency information) is lost, whereas low-spatial 
frequency information is not.  Since basic-level 
categorization is largely based on the latter, we would 
expect more resistance to change of this type of 
categorization compared to subordinate-level 
categorization, where features are, indeed, essential.  
 

A Prediction of the Model 
A simple prediction emerges from these results. By 
manipulating the amount of high-frequency 
information in test images, it should be possible to 
vary infants’ responses to these items after 
familiarization on a standard set of basic-level 
categories. So, for example, consider the Dog/Cat 
stimuli from the experiment by Quinn et al. (1993), in 
which the Dog category largely subsumes the Cat 
category. Under normal circumstances when infants 
are familiarized with cats, then shown a novel dog 
and a novel cat, they devote significantly more 
attention to the novel dog than to the cat. But were we 
to choose a novel dog and a novel cat whose 
differences were based largely on high spatial 
frequency information, we would expect the 
previously observed novelty preference to disappear, 
even if for us, adults, the two animals were quite 
different, one clearly being a dog, the other, clearly a 
cat.  
 

Conclusion 
In an extension of work done by Mareschal & French  
(1997), Mareschal et al. (2000) and French et al. 
(2001), we have been able to show that there is no 
need to use feature-based characterizations of the 
stimuli presented to the encoder network.  
Autoencoder results using Gabor-filtered input 

      HF removed 
      All Frequencies 
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corresponding approximately to the set of frequencies 
that the human visual system is known to use also 
produce a good approximation to categorization 
results in infants. We have also modeled a rather 
counter-intuitive learning advantage for basic-level 
categories that arises from reduced acuity input. 
Finally, based on the results of our autoencoder model 
of infant categorization and on the results we obtained 
using reduced acuity input, we have suggested 
experiments that might be performed on infants to 
further examine the validity of this model. 
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