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Abstract 

Quinn and Eimas (1998) reported that young infants 
include non-human animals (i.e., cats, horses, and fish) 
in their category representation for humans. To account 
for this surprising result, it was proposed that the 
representation of humans by infants functions as an 
attractor for non-human animals and is based on infants’ 
previous experience with humans. We report three 
simulations that provide a computational basis for this 
proposal. These simulations show that that a “dual-
network” connectionist model that incorporates both 
bottom-up (i.e., short-term memory) and top-down (i.e., 
long-term memory) processing is sufficient to account 
for the empirical results obtained with the infants. 

 

Introduction 
During the last decade, an increasing amount of 
computational research, in particular, connectionist 
modeling, has been devoted to the basic mechanisms 
underlying human categorization (e.g., Anderson & 
Fincham, 1996; Kruschke, 1992). Our own research has 
focused on developing a computational model of early 
infant categorization and testing that model empirically 
(French, Mermillod, Quinn, & Mareschal, 2001; 
Mareschal, & French, 1997; Mareschal, French, & 
Quinn, 2000; Mareschal, Quinn, & French, 2002).  

Quinn, Eimas, and Rosenkrantz (1993) observed a 
surprising categorization asymmetry in young infants 
between 3 and 4 months of age. After being exposed to 
a series of photos of cats, the infants showed greater 
interest in an image of a novel dog compared to a novel 
cat. However, after exposure to a series of dogs, infants 
of the same age showed no significantly different 
interest in either a new dog or a new cat.  

We hypothesized that this categorization 
asymmetry was due to the greater perceptual variability 
of dogs and to the fact that the ranges of perceptual 
features of cats were largely included in those of dogs. 
In short, when familiarized on dogs, a new cat was 
perceived as something very much like what had 
already been seen. But, when familiarized on cats, a 
new dog was generally outside of what the infants had 
been familiarized on (i.e., cats). The explanation 
required that very young infant categorization of these 
animals be essentially a bottom-up process. 

For reasons that are given in detail elsewhere (see, 
Mareschal & French, 1997; Mareschal et al., 2000) we 
used a three-layer, non-linear autoencoder to model this 

categorization asymmetry. The model predicted a 
reversal of this categorization asymmetry when the 
original variances and inclusion relationship between 
the two sets of stimuli was reversed by selecting a 
highly varied set of cats and a set of dogs with low 
variability. This prediction was subsequently verified 
experimentally with young infants (French et al., 2001). 
The model also predicted a disappearance of this 
categorization asymmetry when the inclusion 
relationship was removed by careful selection of cat and 
dog breeds for the stimuli. Again, we were able to 
empirically verify that the asymmetry did, in fact, 
disappear (French, Mareschal, Mermillod, & Quinn, 
2003). This work strongly supports the view that 
categorization by young infants of certain types of 
objects (cats, dogs, horses, cars, etc.) is almost 
exclusively a bottom-up, statistically driven process 
with no contribution from prior conceptual knowledge.  

 

“Perceptual attractors” 
Recently, however, Quinn and Eimas (1998) reported a 
very interesting effect that suggests that this picture has 
to be modified when human perceptual features are 
involved. The essence of their experiment is as follows. 
Using an experimental design identical to that used in 
Quinn et al. (1993), they showed 3- and 4-month-old 
infants images of a series of pairs of horses, followed 
by a pair of test images consisting of a novel horse and 
a human (or a fish or a car). As expected, the infants 
looked longer at the novel category (humans, fish, and 
cars) than the new exemplar from the familiarization 
category (horse). However, when the infants were 
familiarized on twelve images of humans, and then 
were presented with an image of a novel human or a 
horse (or a fish or a car), there was no significant 
increase in looking time for the exemplar from the novel 
animal categories, although there was a significant 
increase in looking time for the car.  

In other words, infants do not seem to be able to 
recognize an animal exemplar from a novel category 
after being familiarized with humans. The result was 
initially attributed to a lack of power of the experiment. 
However, two replications were done with a large 
number of subjects and the effect remained. Further, 
control experiments show that there is no discrimination 
bias among the exemplars used in the experiments and 
no spontaneous preference for exemplars of humans 
over instances of non-human animals. It was also 



suggested that the possibility of broader variance of the 
human category, combined with overlapping 
distributions of various perceptual features of the 
images, might have produced categorization 
asymmetries similar to those in Quinn et al. (1993) and 
French et al. (2001). However, these hypotheses did not 
stand up to closer scrutiny. By testing the typicality of 
the pictures of humans, horses, and fish by naïve 
observers, Quinn and Eimas (1998) found that the 
human category actually seems to be the least variable 
of the three. (This was subsequently verified by an 
analysis of the Gabor filtered images.) 

To explain the asymmetrical categorization of 
humans and non-human animals, Quinn and Eimas 
(1998) suggested that the early exposure of the infants 
to human visual stimuli might generate a global 
category that included other animals. The human visual 
stimuli might act as a powerful “perceptual attractor” 
for stimuli sharing even a small number of common 
perceptual attributes with humans.  

The simple autoencoder model of Mareschal and 
French (1997), Mareschal et al. (2001), and French et 
al. (2001), cannot model the categorization asymmetry 
observed by Quinn and Eimas (1998). We hypothesize 
the need for a shift from the purely bottom-up 
perceptual categorization paradigm of the simple 
autoencoder to a model that includes a long-term 
memory capacity that is able to influence purely 
bottom-up categorization. 

The remainder of this paper is organized as 
follows. We first show that the standard autoencoder 
model fails on the Quinn and Eimas (1998) data and 
discuss why this occurred. We then present a dual-
network memory system (Ans & Rousset, 1997, 2000; 
French, 1997) that involves a continual interaction 
between two networks — one designed to process new 
input, which we might loosely designate as the STM 
network, the other designed for long-term storage, 
which we call the LTM network. We first code the 
images in terms of neurobiologically plausible spatial-
frequencies (Archambault, Gosselin, & Schyns, 2000; 
French, Mermillod, Mareschal & Quinn, 2002). We 
then show that, if this dual-network system has 
previously stored in its LTM network prior perceptual 
information about human images, and if this 
information is re-introduced into STM when it is 
processing new input, the STM network reproduces the 
asymmetric categorization results of Quinn and Eimas 
(1998). Finally, we examine the hypothesis that, 
because the effect could be due to a simple enlargement 
of the “human image” attractor basin, it might be 
possible to obtain the same effect by simply enlarging 
this basin by adding noise to the input when training the 
network on perceptual images of humans. Our initial 
investigation of this issue shows that the addition of 
noise is not sufficient, implying that this process really 
does require the co-mingling with the new data to be 
learned by the network of previously-stored information 
of the perceptual images of humans. 

 

Contribution of LTM in young infants 
Our hypothesis raises the question of early long-term 
memory storage and consolidation of perceptual stimuli. 
Previous research has shown evidence of early long-
term memory storage under certain circumstances. 
Rovee-Collier, Evancio, and Earley (1995) found that 3-
month-old infants are capable of long-term storage as 
long as the stimulus is “refreshed” within a certain time 
window. They reported long-term retention for 
reinforcement learning if the infants had a reminder 
within 2 to 3 days after initial learning. In related 
research, Merriman, Rovee-Collier, and Wilk (1997) 
showed that long-term retention could influence a 
categorization task by 3-month-old infants. They 
showed that infants exposed to the stimuli during 3 
daily sessions are capable of some degree of long-term 
retention. In our study, we assume that young infants 
are exposed to humans sufficiently often to allow 
consolidation in long-term memory of this particularly 
important perceptual stimulus class. 

 

Dual-network memory systems 
Near the end of the 1980’s a serious problem with many 
connectionist models came to light ─ namely, the 
problem of catastrophic forgetting (McCloskey & 
Cohen, 1989), where new learning completely destroys 
previously learned information. McClelland, 
McNaughton, and O’Reilly (1995) suggested that the 
brain’s way of avoiding this problem was the 
development of two complementary learning systems, 
the hippocampus and the neocortex. New information 
was learned in the hippocampus and old information 
was stored out of harm’s way in the neocortex. At about 
the same time, French (1997) and Ans & Rousset (1997, 
2000) suggested dual-network connectionist 
architectures to overcome this problem. These were 
coupled networks, continually exchanging information 
by means of pseudopatterns (Robins, 1995). One 
network served as a long-term storage network (LTM); 
the other (STM) was used to learn new information. 
When new information was to be learned by the STM, a 
number of LTM pseudopatterns (each of which 
reflected the contents of LTM) were produced by 
sending noise through the LTM network and 
associating this noise with its output. A series of LTM 
input/output patterns generated in this way were then 
mixed with the new patterns to be learned by the STM 
network. Catastrophic forgetting of previously learned 
information was thereby effectively overcome.  

Results show that for some categories young 
infants do form (and presumably use) long-term 
memory traces. This makes particularly appropriate the 
use of this dual-network architecture to simulate the 
asymmetric categorization results of Quinn and Eimas 
(1998). We will see that this type of dual-network 
connectionist model does, indeed, reproduce these 
results.  

 

Simulation of the perceptual system 



In order to simulate infant learning, we need a 
neurobiologically plausible means of encoding 
perceptual information from the visual environment. 
We chose an encoding scheme that mimics the neural 
processes from the retina to the V1 visual pathway 
when in the presence of an image. This scheme involves 
decomposing each image into a spatial frequency map 
(Acerra, Burnod, & de Schonen, 2002; Archambault et 
al., 2000; French et al., 2002). The neurobiological 
plausibility of this encoding derives from the fact that 
different columns in V1 are sensitive to different ranges 
of spatial frequencies (De Valois & De Valois, 1988; 
Tootell, Silverman, & De Valois, 1981). We were able 
to characterize each image as a unique vector of 26 real 
numbers each of which corresponded to an “energy” 
value for a Gabor filter, simulating the activity of V1 
complex cells (Sakaï & Tanaka, 1999). Space 
constraints do not allow us to present the details of this 
encoding here; they can be found in French et al. 
(2002). 

 

Overview of the three simulations 
We present three simulations. The first shows that the 
autoencoder model originally used by Mareschal and 
French (1997) and Mareschal et al. (2000), 
implementing the infant habituation theories of Sokolov 
(1963), cannot simulate the empirical data in Quinn and 
Eimas (1998). In Simulation 2, we show that the dual-
network model described above in which the LTM 
network has stored encodings of visual images of 
humans does correctly simulate the data in Quinn and 
Eimas (1998). Finally, in Simulation 3, if the LTM 
network has no prior learning of human images, the 
dual-network model does not reproduce the results of 
Quinn and Eimas (1998). 

 

Simulation 1: Failure of the autoencoder 
model to simulate Quinn & Eimas (1998) 

As discussed in the Introduction, the bottom-up 
autoencoder model of Mareschal and French (1997) and 
Mareschal et al. (2000) has been remarkably successful 
in simulating (and predicting) categorization 
performance for certain types of categories in young 
infants. Autoencoders are connectionist networks that 
learn to produce on output what is presented on input. 
The original model used measurements of explicit 
features to encode the images seen by the infants. This 
encoding was made more neurobiologically plausible 
by using spatial-frequency data to characterize the 
inputs (French et al., 2002). This suggests that, at least 
for the categories used (dog, cat, fish, horses, etc.), 
young infant categorization was a bottom-up process 
driven by the statistical distributions of the perceptual 
features of the stimuli.  

However, Quinn and Eimas (1998) used this 
procedure with humans and horses (and cats and fish, as 
well). To reiterate, they found that when familiarized on 
horses, infants show, as expected, a significantly higher 
interest thereafter when shown the image of a human 
compared to that of a novel horse. However, when 

exposed first to images of humans, there is subsequently 
no significantly higher interest in horses (or the other 
nonhuman animal species)!  

In the following “dual-network” simulations, we 
consider the LTM network to be the “top-down, 
knowledge-based” network. This addition contrasts 
with the purely “bottom-up” statistical learning of the 
patterns in the environment by the simple autoencoder 
without a LTM network. 

 
Network 

We used a standard 26-20-26 feedforward 
backpropagation autoencoder network (learning rate: 
0.1, momentum: 0.9). We chose a 26-20-26 architecture 
to resemble, in terms of the input-hidden unit 
compression, the architecture used in previous 
simulations on perceptual categorization (French et al., 
2002; Mareschal et al., 1997; Mareschal et al., 2000).  

 
Stimuli 

Using a spatial frequency encoding of the stimuli 
(French et al., 2002), we simulated the visual acuity of 
the 3- to 4-month-old infants (4 cycles/degree) for the 
data used in Quinn and Eimas (1998). The vectors were 
normalized between 0 and 1, filter by filter, across all of 
the 36 items comprising the stimuli. For each run of the 
program, the network was trained on 12 stimuli from 
one category (either Horses or Humans), and then tested 
on the 6 remaining stimuli from the training category 
and 6 randomly chosen stimuli from the 18 stimuli in 
the remaining category.  

 
Procedure 

As in the original simulations (French et al., 2002; 
Mareschal & French, 1997; Mareschal et al., 2000), the 
autoencoder was trained on 12 randomly selected 
stimuli from one of the two categories (each category 
had 18 stimuli total). The stimuli were presented to the 
network in pairs (to simulate presenting the infants with 
pairs of images) for a fixed duration of 250 epochs 
(corresponding to the 15-second presentation for each 
pair of images shown to the infants).  
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Figure 1. Network error produced by the autoencoder 
after training on Human and Horse categories. 
Exemplars of the non-training category produce 
significant increases in error compared to novel 
exemplars from the training category. 

 
Upon completion of the training phase, the 6 

remaining test vectors from the training category were 
presented to the network, along with the 6 randomly 



chosen vectors from the other category. The observed 
output of the network was compared to the original 
input in order to give an error value that measured how 
well the network was able to autoassociate each of the 
test patterns. All results were averaged over 50 runs. 
 
 
Results 

The autoencoder produced a significant increase in 
error when trained on images from the Human category 
and tested on novel humans compared to horse 
exemplars (F(1, 98) = 337.2, p<0.001). When the 
network was trained on the category Horse, it also 
produced a significant increase in error (F(1, 98) = 
111.74, p<.001). (Figure 1). 
 
Discussion 

The model’s largely symmetric increase in error 
was not observed by Quinn and Eimas (1998). They 
found that when familiarized with images of humans, 
the preference scores for horses and novel humans were 
not significantly different from chance, whereas when 
familiarized with images of horses and tested on 
humans, the preference scores for humans were 
significantly above chance.  

 
Simulation 2: LTM storage of human images  

 

Overview of the simulation 
In order to examine the influence of prior learning 

and storage in LTM of the human category, we used the 
dual-network memory model proposed by French 
(1997), consisting of a long-term storage network (LTM 
network), where previously learned information is 
stored, and a short-term storage network (STM 
network), where new information is learned. We first 
trained the LTM network on 18 exemplars of humans in 
different postures and positions. Once this was 
completed, we then compared the categorization 
performance of the STM network in two situations. In 
the first, we trained it on 12 images of humans 
(randomly selected from a second set of 18 and not the 
same images as those used to train the LTM network) as 
in Simulation 1. During learning of the human images, 
the STM network also received input from the LTM 
network. After the completion of this familiarization 
phase on human images, the STM network was tested 
on the 6 remaining images from the human image set 
and 6 randomly selected images from the horse image 
set. The network’s categorization performance on these 
two sets of test images was compared. 

We hypothesized that the influence of the 
representations of humans in LTM on learning in the 
STM network would produce the categorization 
asymmetry observed in Quinn and Eimas (1998).  
 
Material 

The dual-network memory model is composed of 
two neural networks (Figure 2) called the STM network 
and LTM network. Although this is not a requirement 
of the model, in this simulation each of these networks 

is a 26-20-26 feedforward backpropagation autoencoder 
network identical to the one used in Simulation 1. The 
LTM network was first trained on a set of images of 
humans. Then the STM network was simultaneously 
trained on the new stimuli from the environment and 
pseudopatterns generated by the LTM network. All 
parameters of the STM network were identical to those 
of the LTM network (learning rate of 0.1, momentum: 
0.9 and a Fahlman offset of 0.1).  
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Figure 2. The dual-network memory model. 
 
Stimuli 

The human-image stimuli used to train the LTM 
network were 18 pictures of different humans in various 
positions as might be seen by a 3-month-old infant in 
different situations. Each of these images was uniquely 
encoded as a 26-element vector, each of whose values 
epresented the energy value of a particular Gabor filter. r 

Procedure 
We first created a Human category representation 

in the LTM network based on the learning of 18 
exemplars of humans taken from real-life settings. Each 
stimulus was filtered with an average acuity of 2 cycles 
per degree for the category learned by the LTM network 
(to simulate the visual acuity of infants before 3 to 4 
months of age when, presumably, they would have 
acquired this category). In the test phase (simulating 3- 
to 4-month-old infants) this visual acuity was increased 
to 4 cycles per degree. The number of training epochs 
for the LTM network was set at 1000 in order to create 
a reasonably reliable representation of the Human 
category in this network.  

We then tested the influence of that LTM 
representation on category learning in the STM 
network. Each time a set of patterns (in the present 
simulation each set contains two patterns) was 
presented to the STM network, 4 new pseudopatterns 
were generated by the LTM memory. Feedforward-
backpropagation weight changes were then made for 
patterns to be learned, as well as for each of the four 
pseudopatterns. For each learning epoch, 4 new LTM 
pseudopatterns were generated. In this way, a reflection 
of the contents of LTM is learned by the STM network, 
along with the new patterns. The maximum number of 

Quant-Mermillod
Bob, if you want use the PCA algorithm or reverberation process, we can run another simulation on that in the paper.



training epochs was raised from 250 to 2000 epochs in 
order to allow the STM network to develop reliable 
internal representations of the new patterns from the 
environment combined with the contents from LTM 
memory. The ratio of pseudopatterns to real patterns is 
2:1 in order to ensure the STM network is provided 
with a relatively good reflection of the contents of 
LTM. 
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Figure 3. Neural network error produced by the STM 
autoencoder after training on Humans and Horses with 
input from the LTM network previously trained on 
exemplars from the Human category. 
 
Results 
 The STM network was trained, as in Simulation 1, 
first on images from the Human category (while also 
receiving pseudopattern input from the LTM network). 
It was then tested on novel images from the Human 
category and images from the Horse category. As in 
Quinn and Eimas (1998), now there was no significant 
increase in error for the test exemplars in the Horse 
category compared to novel exemplars from the Human 
category (F(1, 98) = .854, p>0.358). The STM network 
was then re-initialized and trained on images from the 
Horse category (again, while receiving pseudopattern 
input from the LTM network) and, after this 
familiarization phase, was tested on novel images of 
horses and images of humans. In this case there was a 
significant increase in error for the human images 
compared to the novel horse images, as in Quinn and 
Eimas (1998) (F(1, 98) = 86.42, p<.001). See Figure 3. 
 
Discussion 

These results, using a dual-network model of 
memory (French, 1997), support the hypothesis that the 
asymmetric categorization observed in Quinn & Eimas 
(1998), which we could not simulate with a simple 
autoencoder, could be due to the influence on STM of a 
representation of the Human category in LTM. 
 

Simulation 3: The contents of LTM 
 

Overview of the simulation 
Our hypothesis is that the dual-network memory 

model was able to reproduce the results of Quinn and 
Eimas (1998) because the LTM network contained a 
representation of Humans that influenced processing in 
the STM network. In short, this LTM information was 
increasing the attractor basin of Humans, causing it to 

largely include Horses, thereby giving rise to the 
asymmetry reported by Quinn and Eimas (1998). 
However, it might be possible that the contribution of 
pseudopatterns from the LTM network alone, without 
this network necessarily having learned anything, could 
be enough to increase the Human attractor basin, 
thereby giving rise to the observed categorization 
asymmetry. This would be equivalent to adding noise to 
the patterns to be learned by the STM.  

 To test this we ran the dual-network model without 
the LTM network having first learned the Human 
category, but with it nonetheless contributing 
pseudopatterns when the STM network was learning 
new patterns.  
 
Material and Procedure 

The dual-network was identical in all respects to 
the one run in Simulation 2. The only difference is that 
the LTM network was left completely untrained. The 
training and testing procedures were identical to those 
in Simulation 2. 
 
Results 

The results (Figure 4) show that the network 
returns to the symmetric categorization situation of 
Simulation 1 in which a simple autoencoder was used. 
In other words, the content of the LTM network is, 
indeed, influencing learning in the STM network as it 
learns new patterns. 
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Figure 4. When the LTM-network is “empty” and 
generates pseudopatterns that are simply noise, the 
STM categorization performance returns to the 
performance of the autoencoder model (see Figure 1). 
 

The autoencoder produced a significant increase in 
error when trained on the Human category and tested on 
novel humans compared to horse exemplars (F(1, 98) = 
142.87, p<0.001). When the network was trained on the 
Horse category, it also produced a significant increase 
in error (F(1, 98) = 43.09, p<.001). 
 

Predictions 
There are a number of implications of this work on 

the categorization processes of infants as they grow 
older and their long-term memory capacity develops. 
The most important of these is that we should see the 
disappearance, or at least a significant attenuation, of 
the purely bottom-up categorization asymmetries 
observed in Quinn et al. (1993) and French et al. 
(2001). 

Quant-Mermillod
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It is also perhaps reasonable to assume that there is 
nothing special about the Human category that was 
stored in the LTM network in our model. The prediction 
is that any category to which young infants are exposed 
repeatedly would also serve as an attractor. Presumably, 
this hypothesis could be tested by artificially exposing 
young infants repeatedly to a particular category. 

 

Conclusions 
This work represents a first step in the study of the 
transition from the largely bottom-up processing of 
category information by very young infants to the 
categorization mechanisms that are integrated with the 
long-term memory capacities of the developing infant. 
Many questions remain about how this change takes 
place, but we have shown the important contribution of 
concepts stored in long-term memory to the otherwise 
largely bottom-up learning of young infants. 
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