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Abstract

An  unusual  category  learning  asymmetry  in  infants  was 
observed by Quinn  et al. (1993). Infants who were initially 
exposed to a series of pictures of cats and then were shown a 
dog and a novel cat, showed significantly more interest in the 
dog than in the cat. However, when the order of presentation 
was reversed —  i.e., dogs were seen first, then a cat and a 
novel  dog  — the  cat  attracted  no  more  attention  than  the 
novel dog. A series of experiments and simulations seemed to 
show that this asymmetry was due the perceptual inclusion of 
the  cat  category  within  the  dog  category  because  of  the 
greater  perceptual  variability  of  dogs  compared  to  cats 
(Mareschal & French, 1997;  Mareschal  et al., 2000; French 
et al., 2001, 2004). In the present paper, we explore whether 
this asymmetric categorization phenomenon generalizes to the 
auditory  domain.  We  developed  a  series  of  sequential 
auditory stimuli analogous to the visual stimuli in Quinn et al. 
Two experiments on adult listeners using these stimuli seem 
to  demonstrate  the  presence  of  an  identical  asymmetric 
categorization  effect  in  the  sequential  auditory  domain. 
Furthermore, we simulated these results with a connectionist 
model of sequential learning.  Together with the behavioral 
data,  we  can  conclude  from this  simulation  that,  as  in  the 
infant  visual  categorization  experiments,  purely  bottom-up 
processes were largely responsible for our results.

Introduction
A  number  of  years  ago,  Quinn,  Eimas  &  Rosencrantz 
(1993)  and  Eimas,  Quinn,  &  Cowan  demonstrated  an 
unexpected  asymmetry  in  category  acquisition  in  young 
infants.   When  3-  to  4-month-old  infants  were  shown 
different photographs of either cats or dogs they were able 
to form perceptual categories of either groups of pictures. 
Infants  who  were  first  shown  a  number  of  different 
photographs of cats and are then a picture of a dog along 
with a picture of a novel cat will be more attentive to the 
dog than to the novel cat. This was interpreted as showing 
that  the  infants  had formed a  Cat  category  that  excluded 
dogs.  However,  infants  who  were  first  shown  different 
photographs of dogs and then a picture of a cat along with a 
novel dog were not preferentially attentive to either picture. 

This surprising finding was interpreted as showing that 
infants had formed a Dog category that  included cats.  In 
other words, infants show an exclusivity asymmetry in their 
development of some perceptual categories. Thus, the Dog 
category does  not  exclude  cats  whereas  the  Cat  category 
excludes dogs.

Between  1997  and  2004,  a  number  of  papers  were 
published  that  attempted  to  explain  and  expand on  these 
findings.  (Mareschal  &  French,  1997;   Mareschal  et  al., 
2000;  French  et  al.,  2001,  2004;  etc.)  These  experiments 

seemed  to  demonstrate  that  the  key  relationship  that 
produced these results was that the smaller variability of the 
Cat  category  compared  to  the  Dog  category,  meant  that, 
perceptually,  the  latter  category  largely  subsumed  the 
former.   This  meant  that  bottom-up,  purely  perceptual 
mechanisms  were  enough  to  explain  the  categorization 
asymmetry observed by Quinn and colleagues. 

The authors manipulated the variability of the Dog and 
Cat  categories  by  selecting,  in  one  experiment,  a  set 
different races of dogs with little variability and a set of cats 
with a much greater variability.  In this way, even though 
the  high-level  categories  (i.e.,  Dog  and  Cat)  remained 
unchanged, their low-level perceptual variability had been 
reversed. The connectionist model that had been developed 
and which relied only on the statistical distributions of the 
features of the two categories,  predicted a reversal  of the 
original asymmetric categorization.  This is,  indeed, what 
the authors  found.   As a  result,  the authors  were able  to 
conclude  that  the  infants  were  relying  exclusively  on 
statistical (i.e., bottom-up) properties of the stimuli in their 
category discrimination.  

The acoustic domain
This ability of young infants to discriminate between two 
categories of complex visual stimuli in a purely bottom-up 
manner -- i.e., in the absence of any conceptual knowledge 
of  the  stimuli  --  led  us  to  wonder  if  there  might  be  an 
analogous  phenomenon in the acoustic domain.  

Although  the  perception  of  music  relies  on  many 
different  perceptual  dimensions,  such as timbre,  loudness, 
rhythm, and pitch, one of the most salient features of music 
is that of pitch.  Pitch perception is, indeed, fundamental to 
melody in music.  When memorizing a tune, people do not 
represent the melody as a series of independent pitches, but 
process each pitch relative to the others. This leads to the 
fundamental  notion  of  musical  interval.  The  “sequential 
distance”  between  two  notes  can  be  measured  by  the 
chromatic interval (Krumhansl, 1990) seems to be the basic 
unit in the memorization of melodies.  Plantinga & Trainor 
(2005)  showed  that  infants  store  melodies  in  terms  of 
relative pitches and not absolute pitches. 

Asymmetric effects in music perception
In perception of musical style, Bigand & Barrouillet (1996) 
claimed  that  (non-musician)  participants  who  were 
familiarized  with  selections  of  Baroque  music  (narrow 
category, Bach) and then tested on a novel Baroque piece 
versus a selection of early 20th century tonal musical (e.g., 
Debussy), showed an significantly increased interest in the 
early  20th century  selection.   On  the  other  hand,  when 
participants were familiarized with selections of early 20th 
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century music and then tested on a novel selection of early 
20th century  music  versus  a  Baroque piece,  there  was  no 
increased interest in the Baroque piece.  

In  light  of  these  results  and  the  asymmetric  visual 
categorization asymmetry observed in infants, we decided to 
attempt to explore this phenomenon in a controlled acoustic 
environment  using  artificially  produced  musical  stimuli 
presented to non-musician participants.  

Experiment 1
The  aim  of  this  experiment  was  to  assess  an  effect  of 
interval distribution in the formation of melodic categories. 
To  this  end,  we  compared  the  exclusivity  of  auditory 
sequential categories formed during exposure to exemplars 
of melodies, statistically controlled in terms of their interval 
distributions.  In this experiment we attempted to reproduce 
the  category  inclusion  and  distribution  relationships  that 
produced the asymmetric categorization results in Quinn et 
al., 1993 (see Figure 1).
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Figure 1: General inclusion and variability of the feature 
distributions for Dogs and Cats in Quinn et al., 1993.

Participants
51 undergraduates psychology students from the University 
of Burgundy, all non-musicians, took part in the experiment. 

Material
For each participant, two sets of melodies were created, one 
following  a  narrow distribution,  the  other  a  broad 
probability  distribution  of  the  occurrence  of  11  different 
musical intervals (see Figure 2). Each melody was built with 
5  consecutive  intervals  (e.g.  6  pitches),  randomly  chosen 
according to one of the distributions. Each set consisted of 
72  sequences.  The  start  note  of  the  melodies  was 
counterbalanced between the 12 possible pitches (yielding 6 
different  melodies  per  start-note).  Each  participant  was 
randomly assigned one of the two distributions. 

Even  though  specific  intervals  associated  with  each 
probability  used  in  both  the  training  and  test  phases  are 
varied  over  participants,  the  probability  of  occurrence  of 
these intervals followed one the two distributions shown in 
Figure 2 (i.e.,  either narrow or broad).  This was done  to 
counterbalance the effect of prominence of some particular 
intervals in the process of melodic categorization. 

Figure 2:  Probabilities of occurrence of 11 musical 
intervals, for the narrow (gray) and broad (black) 

conditions.

Melodies  were  synthesized  with  a  MIDI  synthesizer 
software (using the piano bank). Each tone was randomly 
played for either 250 or 500 ms, giving more “musicality” 
to the pitch sequences (in order to alleviate listener fatigue). 

A  further  feature  that  is  of  particular  importance  in 
melodic perception is the contour, or the pattern of ups (+) 
and downs (–) of pitches from one note to the other (see 
Dowling & Harwood, 1986).  The contour of each melody 
was random, and there was no repetition of contour/interval 
patterns within the same set of melodies.

Procedure
Each participant was exposed to 84 pitch sequences.  The 
first 60 sequences — which constituted the training phase 
— were exemplars drawn from one of the two distributions. 
The 24 remaining items — which constituted the test phase 
—  were  composed  of  12  new  items  from  the  training 
distribution,  and  of  12  items  from the  other  distribution. 
These last 24 items were randomly ordered. 

A  presentation  program was  written  within  MATLAB 
programming  language.  Melodies  were  played  through 
headphones. At the end of the pitch sequence, participants 
were then asked if they thought they had previously heard 
the  melody  during  the  training  session.  The  inter-trail 
interval between the subject's answer and the sounding of 
the next  melody was 2 seconds.

Results
For each participant,  the correct-response rate (percentage 
of  correct  recognition  of  the  participant's  training 
distribution)  during the  test  phase  was  computed.  Single-
group t-tests were used to compare the performance of each 
group to chance levels (50%). 

The  broad group  performance  (50%)  was  not 
significantly different from chance, t(24)=0, p=1, whereas 
the  narrow group's performance (55.6%) was significantly 
above chance, t(25)=2.42, p=0.023. This suggests that the 
narrow group learned aspects of the interval statistics of the 



narrow items,  allowing  them  to  recognize  new  melodies 
from this distribution appropriately.

Figure 3:  Mean endorsement rate during test phase for the 
broad group (left) and the narrow group (right). Error bars 

represent standard errors.

We then analyzed the endorsement rate (i.e., percentage 
of accepted test items) for both groups, for new broad and 
new  narrow  items  (Figure  3).  A  2x2  mixed-ANOVA 
(broad/narrow training condition x broad/narrow test items) 
revealed  a  significant  main  effect  of  test  items 
(F(1,49)=4.51, p<.05).  In other words,  as in the Quinn  et 
al.’s (1993) Dog-Cat studies, participants familiarized with 
the  narrow  (i.e.,  low-variability)  stimuli  excluded  more 
contrasting items (in this case, new broad items), whereas 
participants  familiarized  with  the  broad  (i.e.,  high-
variability) category rejected narrow items at no better than 
chance.  This mirrors the inclusion/exclusion relationships 
observed in Quinn et al. (1993)’s stimuli.  

Experiment 2
In light of the results of the first experiment, we decided to 
tighten  the  constraints  on  the  statistical  properties  of  the 
sequences of notes comprising the melodies for the broad 
and narrow categories.  This was done in order to determine 
if it was possible to enhance the effects found in the first 
experiment.  In addition, during training, we decided to use 
a more incidental memory task.  

Participants
24  students  from  the  University  of  Burgundy,  all  non-
musicians and having not participated to the experiment 1, 
took part in the experiment. 

Material
Melodies  were  generated  by  a  Markov  process,  yielding 
highly constrained Markov chains, where the probability of 
a  specific  event i,  depends  on  the  occurrence  of  a  prior 
event.  We used  a 1st-order  Markov model,  which  can be 
represented  using  a  2-dimensional  transition  matrix.  The 
probability  of  a  given  event  depends  only  on  the  event 
immediately preceding it. 

Table 1: Transitional probabilities between pitches, for the 
broad distribution (in black in figure 4).
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To pitch

end 1 2 3 4 5 6

start .1 .25 .15 .15 .2 .2 .1

1 .2 .15 .15 .1 .25 .1 .2

2 .1 .1 .15 .15 .2 .2 .25

3 .1 .2 .15 .15 .2 .1 .25

4 .1 .2 .2 .15 .15 .25 .1

5 .1 .25 .15 .1 .15 .2 .2

6 .1 .1 .25 .2 .15 .2 .15

A sequence is built by selecting a start-note according to the 
probabilities  of the “start”  row,  selecting the second note 
according to its probability of occurrence after the first note, 
cycling throw the table until  the “end” column is reached 
(see table 1). The transitional probabilities between a note 
and  the  6  possible  following  ones  (plus  the  “end”  code) 
followed either a broad or a narrow distribution (Figure 4). 

Figure 4:  Probabilities of occurrence of the 7 transitions, in 
narrow (gray) and broad (black) conditions.

The  transition  matrices  for  the  two  categories  were 
associated with four different pitch-sets (notes 1-6 in Table 
1)  :  C4/D4/D#4/F4/G#4/A#4,  D#4/F4/F#4/G#4/B4/C#4, 
A3/B3/C4/D4/F4/G4  or  F#4/G#4/A4/B4/D4/E4,  to  avoid 
specific effects associated with one or the other pitch-set. 
Note that the musical intervals between each adjacent notes 
is identical across the 4 sets.

70 melodies  were generated per  condition, 60 of  them 
being  used  as  exemplars  in  a  training  phase.  In  the  test 
phase, 20 pairs of melodies were used, composed of the 10 
remaining sequences  of  the  training condition,  and of  10 
sequences  of  the  contrasting  distribution.  Each  pair 
consisted of one melody from each set.  The order within 
pairs was counterbalanced. The number of tones for  each 
melody in both group varied from 4 to 7 (µnarrow 5,  µbroad : 



4.7).  Tones’  duration  and  contour  were  controlled  as  in 
Experiment 1. 

Procedure
Participants were seated in front of a computer.  Melodies 
were  played  through  headphones.  In  a  first  phase, 
participants  were  asked  to  listen  to  the  melodies,  and  to 
report  the  total  number  of  pitches  of  each  sequence. 
Feedback was given after each answer, indicating whether 
or not their reply was correct, and if not, reporting the right 
number  of  pitches.   The  inter-trail  interval  between  the 
subject's answer and the next melody was 2 seconds. In a 
second  phase,  participants  heard  pairs  of  melodies.  They 
were then asked to select, for each pair, the melody most 
similar to the ones they had heard in the first phase. Both 
groups had 12 participants.

Results
First,  the  data  obtained  from  the  training  phase  was 
analysed.  The  mean  number  of  correct  responses  was 
calculated for each participant. This score was high for both 
groups  (broad group  :  88%  (SD:  7.5),  narrow group: 
83.3% (SD: 11.1)). The pitch-counting task was relatively 
easy for the participants. The participants’ strategy seemed 
to generally be to rehearse the melody, pitch by pitch, after 
hearing it.  A 2-tailed t-test  conducted with groups as  the 
independent  variable,  and percentage of  correct  responses 
during the training phase as dependent variable yielded no 
significant effect, t(22)=1.21, p>.2, showing that melodies 
from both sets were not processed significantly differently 
according to the task  (counting the tones).

The  second  set  of  analyses  concerned  the  test  phase. 
Here again, our results closely resembled those of the infant 
categorization  experiments  of  Quinn  et  al.,  (1993).   The 
broad group  performance  (49.2%)  was  not  significantly 
different  from  chance,  t(11)=-0.3,  p>0.7,  whereas  the 
narrow group's  performance  (57.5%)  was  significantly 
above chance, t(11)=3.95, p=0.023. 
A 2x2 mixed-ANOVA (broad/narrow training condition x 
broad/narrow  test  items)  revealed  an  effect  of  test  items 
(F(1,22)=6.25,  p=.02),  but  no  significant  main  effect  of 
training nor a significant interaction (Figure 5). 

These  results  suggest  that  participants  in  the  narrow 
condition  learned  the  statistical  distribution  of  the 
sequences, in terms of musical intervals, allowing them to 
recognize  new  melodies  drawn  from  this  distribution, 
whereas participants within the  broad condition performed 
at chance level.

Figure 5 :  Mean endorsement rate during test phase for the 
broad group (left) and the narrow group (right).  Error bars 

represent standard errors.

Discussion
Experiment 2 confirmed and enhanced the effects observed 
in the first experiment. 

The material used in these experiments was “music-like,” 
rather  than  “musical,”  because  although  the  stimuli  were 
constructed with musical pitches, they could not have been 
encountered in a natural musical environment. So, it seems 
unlikely  that  top-down  knowledge   could  have  been 
responsible  for  the  asymmetry we observed.  However,  to 
confirm that these results do not come from any influence of 
top-down  musical  knowledge,  we  tried  to  produce  the 
results  with a bottom-up connectionist model of sequence 
processing. 

Simulation
The aim of the following simulation is to show that a purely 
bottom-up cognitive model,  without any prior knowledge, 
can  explain  the  results  of  our  experiments.  The  main 
difference with the Quinn et al's visual stimuli resides in the 
sequential  aspect  of  our  auditory  material.  In  fact,  any 
attempt  to  simulate  the  asymmetric  effect  shown  in 
experiments  1  and  2  must  accommodate  the  sequential 
properties  of  the  material.  In  order  to  model  the  process 
underlying  the  results  described  above,  we  used  Simple 
Recurrent  Network  (SRN;  Elman,  1990).  These  artificial 
neural  networks  are  frequently  used  to  encode sequential 
dependencies  between  elements  of  a  sequence  (see 
Cleeremans, 1993; Dienes 1993).

Procedure
The material used to train the networks is identical to that of 
Experiment  2,  except  that  only  one  pitch-set  was  used, 
instead of 4. We used a localist  coding scheme, i.e.  each 
note of a sequence is coded by a unique bit in a 7-elements 
vector (1 bit per note + a “start/end” bit). Two groups of 20 
SRNs were  used,  each  being  exposed  to  exemplars  from 
either the narrow distribution, or the narrow one.



Each network was randomly initialized. Networks were 
composed of 7 input nodes, 3 hidden nodes and  7 output 
nodes.  Hidden  nodes  used  a  sigmoïd transfert  function, 
whereas output nodes used a linear activation function.

During the training phase, each item from a training set 
was presented twice consecutively. Stimuli were presented 
twice  in  order  to  simulate  the  strategy  employed  by 
participants:  rehearsing  the  melody  after  hearing  it  (see 
Experiment 1). For each element of a sequence, the task of 
the  networks  was  to  predict  the  next   element  of  that 
sequence. A mean square error (MSE) is computed for each 
element,  giving a measure of  prediction accuracy (i.e  the 
distance between the  output  computed  by  the  network  in 
response to an element and the actual desired output, that is, 
the next element in the sequence). Weights were updated at 
each time step,  using a gradient  descent  with momentum 
training  algorithm.  The  learning  rate  was  set  to  .1,  the 
momentum term to .4. 

During the  test  phase,  no weight  change was allowed. 
Test items were presented in pairs, the order of items within 
each pair  was random. The context  units  activation  were 
reset to 0 between pairs, but not between items of a pair. 
This  was  meant  to  reflect  the  2-alternative  forced choice 
procedure of experiment 2. Within each test pair, the MSE 
was computed for each item. The sequence associated with 
the lowest MSE reflected the “choice” of the network. We 
then computed an endorsement rate for each test item type, 
across all test pairs. 

Results
Figure  6  shows  the  mean  endorsement  rate  for  the  two 
network groups, in response to new narrow and new broad 
items.

Figure 6: Mean endorsement rate during test phase for the 
the broad and narrow trained-networks.  Error bars 

represent standard errors.

The  simulation  results  closely  resemble  those  of  the 
experiment 2; networks trained with exemplars drawn from 
the broad category cannot distinguish new items from both 
categories,  whereas networks trained with items from the 

narrow category produce more accurate  predictions  about 
the  element  of  the  narrow  sequences,  yielding  a  higher 
endorsement  rate  for  new items  from their  own category 
than from the other. Noting that these networks do not have 
any  prior  knowledge  of  the  material  we  used,  we  can 
conclude  that  a  simple  connectionist  model,  which 
processes stimuli in a purely bottom-up fashion, is sufficient 
simulate our behavioral results. 

Conclusions
These  preliminary  results  suggest  that  the  categorization 
asymmetry in young infants observed by Quinn et al. (1993) 
is not limited to the visual domain.  Rather, it is probable 
that  this  phenomenon also applies  to  auditory perception. 
Our results point to the importance of bottom-up (statistical) 
processing  in  the  perception  and  categorization  by  non-
musicians of sequential auditory stimuli.  

Meulemans and Van der Linden (1997) have shown that, 
in an artificial grammar learning task, participants exposed 
to  a  small  subset  of  a  grammar  were  sensitive  to  the 
similarity of the test items with the training items, whereas 
with longer exposure, this similarity effect disappeared. The 
similarity  was  measured  as  the  mean  probability  of 
occurrence in the training set of the bigrams (2 consecutive 
elements  in  a  sequence)  and  trigrams  (3  consecutive 
elements)  composing  a  test  item.  This  implies  that  the 
statistical distribution of the different bigrams and trigrams 
in  the  training  set  had  an  effect  on  the  ability  of  the 
participant  to  discriminate  sequences  from  their  own 
category (grammar) from distractors. This suggests that the 
asymmetrical effects we described in our experiments could 
be eliminated by the acquisition of syntactic rules governing 
the elements of musical pitches. 

Finally,  these  results  are  limited  to  a  single  auditory 
dimension  (pitch  intervals).   It  will  also  be  necessary  to 
investigate the influence of the myriad other dimensions of 
musical perception (e.g., duration, timbre, rhythm, etc.)  and 
the interaction among these various dimensions.
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