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Abstract 
 

In error-driven distributed feedforward networks new information typically interferes, 
sometimes severely, with previously learned information. We show how noise can be 
used to approximate the error surface of previously learned information. By 
combining this approximated error surface with the error surface associated with the 
new information to be learned, the network’s retention of previously learned items 
can be improved and catastrophic interference significantly reduced. Further, we 
show that the noise -generated error surface is produced using only first-derivative 
information and without recourse to any explicit error information.  
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Introduction 
 Everyone forgets but, thankfully, it is typically a gradual process. Neural networks, on the 
other hand, and especially those that develop highly distributed representations over a single 
set of weights, can suffer from severe and sudden forgetting. Almost all of the early solutions 
to this problem, called the problem of “catastrophic forgetting,” relied on learning algorithms 
that reduced the overlap of the network’s internal representations (see French, 1999, for a 
review) by making these representations more sparse. This had the desired effect of reducing 
interference with the obvious trade -off being a decrease in the network’s ability to generalize.  
 A significantly different approach, one which made use of noise, was developed by 
Robins (1995). The idea was as follows. When a network that had previously learned a set of 
patterns had to learn a new set of patterns, a series of random patterns (i.e., noise) was input 
into the network and the associated output was collected, producing a series of 
pseudopatterns. These pseudopatterns, which reflected the previously learned patterns, were 
then interleaved with the new patterns to be learned. This effectively decreased catastrophic 
forgetting of the originally learned patterns. The use of pseudopatterns will serve as the 
starting point for the algorithm developed in the present paper. Unlike Robins’ algorithm, 
however, we will use pseudopatterns to directly approximate the error surface associated with 
the original patterns. This approximated error -surface will then be combined with the error 
surface associated with the new patterns and gradient descent will be performed on the 
combined error surface. This will be shown to significantly improve the network’s 
performance on catastrophic forgetting. 
 
Measures of forgetting  
 There are two standard measures of forgetting in connectionist models, both of which are 
related to standard psychological measures. The first is a simple error measurement. Suppose 
a first set of patterns N

iiii OIP 1}:{ =→  has been learned to criterion by a network. A new set 
M
iiii OIQ 1}:{ =→  is then learned to criterion. We measure the amount of network error 

produced by each of the patterns in the first set.  
 The second widely used measure of forgetting is an Ebbinghaus “savings” measure, first 
applied to neural networks by Hetherington & Seidenberg (1989): After learning N

iiP 1}{ =  and 

then M
iiQ 1}{ = , we measure the number of epochs required to retrain the network to criterion on 

the initial training set N
iiP 1}{ = . The faster the relearning, the less forgetting that is judged to 

have occurred. We will use both of these measures in the discussion that follows.  
 
Overview of Hessian Pseudopattern Backpropagation (HPBP) 
 Any given set of patterns N

iiii OIP 1}:{ =→  has an associated error surface, )(wE , defined 
over the network’s weights. This means that for each possible combination of values of the 
network’s weights, there will be an overall error associated with the set of patterns (usually, 
the sum of the squared errors produced by each individual pattern, iP ). Learning the set of 

patterns N
iiP 1}{ =  is equivalent to the network’s finding a minimum — call it 0w — of this error 

surface.  
 When a new pattern, newP , is presented to the system, the original error surface )(wE  

changes to )(wE newP . (For simplicity, we will discuss only the case where a single new 
pattern is presented to the network, but the argument is identical for any number of new 
patterns.) In general, 0w , a minimum of the original error surface, )(wE , will no longer be a 
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minimum of )(wE newP . In other words, the network “forgets” the original error surface 
)(wE . What we need is some way for the network to approximate )(wE  in the absence of 

the original patterns. We could then create a new overall error surface that would reflect both 

)(wE and )(wE newP . We do this by taking a weighted sum of the approximation of )(wE , 

which we will call )(ˆ wE , and )(wE newP . Our weight change algorithm will then be gradient 
descent on this combined error surface. In what follows we will develop the mathematics of 
HPBP and will demonstrate the algorithm by means of two simple simulations on empirical 
data, one in which we sequentially learn two sets of patterns to criterion, the other in which 
the network is presented with a series of patterns, each of which is learned to criterion before 
the presentation of the next pattern. 
 
Noise and the calculation of an error surface 
 Assume, as above, that )(wE is the unique error surface defined by a set of real input-

output patterns N
iiii OIP 1}:{ =→  learned by the network. The network’s having learned these 

patterns means it has discovered a local minimum 0w in weight-space for which 0)( 0 =′ wE  
where )(wE ′ represents the first derivative of the error function. 
 If the function f underlying the original set of patterns is relatively “nice” (i.e., 
continuous, reasonably smooth, etc.), then a set of pseudopatterns M

iiii OI 1}:{ =→
))

ψ  whose 
input values are drawn from a flat random distribution will produce a reasonable 
approximation of f. (See French, Ans, & Rousset, 2001, for a discussion of how this 
approximation could be improved by additionally making use of the values of the output 
associated with each random input, or Ans & Rousset, 2000, for a technique that produces an 
“attractor” input pattern from uniform random input. In the present case, however, we simply 
use flat random input to produce the pseudopatterns.) Just as the original set of patterns 

N
iiP 1}{ =  had a unique error surface associated with it, so does the set of pseudopatterns M

ii 1}{ =ψ . 

For this latter error surface, )(wE
)

, it follows from the definition of pseudopatterns that 
0)( 0 =wE

)
 and 0)( 0 =′ wE

)
. The question is how can we produce this approximation of the 

original error surface in the vicinity of 0w (assuming that the original patterns N
iiP 1}{ =  are no 

longer available). 
 We know that for the original error surface )(wE , 0)( 0 =′ wE . While this tells us that 

0w is a local minimum of E, it does not provide any information about the about the shape (in 

particular, the steepness) of )(wE  around 0w , which is what we want. For this we need the 
higher derivatives of )(wE , which, unlike the first derivative, do not disappear when 
evaluated at 0w . Using this steepness and the local minimum information, we reconstruct the 
desired approximation of the original error surface by means of a truncated Taylor series. 
(For other techniques using the higher-order derivatives to improve backpropagation, see, for 
example, Bishop (1991), Becker & Le Cun (1988), etc.) 
 Somewhat counter-intuitively, approximating the original error surface using noise does 
not require any explicit error information; noise moving through the system is sufficient for 
the calculation. Thus, unlike other techniques that make use of pseudopatterns which require 
the system to learn a mixture of pseudopatterns and new patterns (Robins, 1995; French, 
1997; Ans & Rousset, 1997, 2000), here noise is simply sent through the system, and this 
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alone allows us to approximate the error surface around 0w . This approximated error surface, 
combined with the error surface of the new patterns to be learned, produces an overall error 
surface on which gradient descent will be performed.  
  The details of this calculation are as follows. 
 
Hessian pseudopattern backpropagation (HPBP) 
 Assume that the network has already stored a number of patterns and has found a point wo 
in weight space for which all the previously learned patterns have been learned to criterion. 
Further assume that we are using the standard quadratic error function: 

∑ ∑
= =
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where 
P is the number of patterns, 
Noutputs is the number of output units in the network. 

p
iy is the output of the ith output node for the p th pattern 
p
it is the teacher for the ith output node for the pth pattern 

 
E being a continuous, everywhere differentiable function, it has a Taylor series expansion 
about wo which we can write as follows: 
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where: 
w is a point in weight space 
wo is the point in weight space at which the network has arrived after learning the original 

patterns  
)( 0wE ′  is the gradient of E evaluated at wo and 

0wH  is the Hessian matrix of second partial derivatives of E evaluated at wo  

 
For values of w sufficiently close to 0w we will assume that we can truncate the Taylor series 
after the second term. 
 Since the network is at 0w  after having learned the original patterns, this implies that 0w  

is a local minimum of the error surface and, consequently, )( 0wE′  is 0. We can therefore 
write the truncated Taylor series approximation of the error surface corresponding to the 
originally learned set of patterns as: 
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Now assume that a new pattern, P, is presented to the network. This pattern induces an error 
surface, )(wE P . (Note: as mentioned above, the argument is the same for a set of new 
patterns.) 
 

Let )()()( wEwEwE P+=
)

α  
 

where the constant, α, is a weighting factor. 
The standard delta rule gives:  



 5

 

w
E

w
∂
∂−=∆ η   where 

w
E

w
wE

w
E P

∂
∂+

∂
∂=

∂
∂ )(

)
α  

 
But from (3) we have: 
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The weight change rule will therefore be  
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where 
η is the learning rate and 
a is the weighting factor of the prior approximated error surface.  
 
We will now show how noise allows us to calculate 

0wH  

 
Noise and the calculation of 

0wH  

 For each pseudopattern the teacher and the output will, by definition, be the same. In 
other words, 

    0)( =−∀∀ Ψ∈
ψψ

ψ nnn ty               (6) 
 
where 
 Ψ is the set of all pseudopatterns  
 yn is the output from the nth output node of the network 
 tn is the teacher for the nth output node of the network. 
 
The Hessian matrix evaluated at wo is defined as follows: 
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where 0w  is a solution for the originally learned set of patterns. 
 
Consider the <i,j>th term of H : 
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We begin with the error function for the pseudopatterns 
ΨNψψψψ ,,,, 111 K where NΨ  is the 

number of pseudopatterns that will be used to calculate the error surface: 
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where 
ΨN  is the number of pseudopatterns, 

outputsN is the number of output units of the network 
p
ny is the output of the n th output unit for the pth pseudopattern, 
p
nt is the teacher for the nth output unit for the p th pseudopattern.  

 
The second partial derivatives of E are calculated as follows. 
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But we know from (6) that for pseudopatterns: 

0)( =−∀∀ p
n

p
nnp ty  

and, therefore, the second term above is zero, giving: 
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 (The precise terms of the pseudopattern-induced Hessian matrix are given in Appendix 1.) 
  
 Interestingly, only first derivative information is required in this pseudopattern-induced 
Hessian, which means that the complexity of this calculation is )( 2NO where N is the number 
of weights in the network.  
 In short, from (3) and (7) we conclude that noise passing through the network is sufficient 
to approximate the error surface for the original patterns close to w0. 

The pseudocode for the HPBP algorithm is shown below.  We assume that the network 

has already learned a set of patterns, P = { }N
iiP 1=  and is at a point local minimum w0 in weight 

space. The network must the n learn a new data set, Q  = { }M
iiQ 1= .  To create the Hessian, we 

use R pseudopatterns.  
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Initialize the Hessian to 0.  
Set network activation values to 0. 
Hessian Loop: 

Put random input vector through the network to produce a pseudopattern; 
Use these activation levels and network weight values to create a matrix of second- 

derivative values to be added to the Hessian 
0wH ; 

Exit Hessian Loop after R pseudopatterns; 
Training Loop: For each pattern in Q, do: 
 Feedforward pass; 
 Error backpropagation, changing the weights according to (5), including momentum;  

When all patterns in Q are learned to criterion, exit Training Loop; 
Test errors for all patterns in P. 

 
Simulations 
  In order to show that the HPBP algorithm works, we performed two simulations, the first 
involving catastrophic forgetting and the second involving sequential learning.   
 
Simulation 1: Catastrophic forgetting 
 
We created two sets of four patterns, P and Q. The two sets were intentionally designed to 
maximally interfere with one another (even though a network would have been able to learn 
all patterns in the combined set P ∪ Q). The network was trained first on P and then on Q.   
Once it had learned Q  to criterion, we tested it to see how well it had remembered P.  An 8-
32-1 network was used for both BP and HPBP networks with learning rate 0.01, momentum 
0.9, Fahlman offset 0.1, and with a maximum weight-change step size of 0.075. For the 
HPBP network we used 100 pseudopatterns and, because we wanted to give more weight to 
approximated error surface associated with past learning, we set its weighting factor to 8.  All 
results were averaged over hundred runs of the program. 
 
Results 
 After learning the first set of patterns P, then Q, the standard backpropagation network 
produced an average error over all items in P of 0.80. (Thus, as intended, interference of the 
items in P by the items in Q was extremely severe.) By contrast, the HPBP network produced 
an average error for these previously learned items of only 0.38.  Further, the HPBP network 
correctly generalized on 67.5% of the previously learned items, whereas the backpropagation 
network was able to generalize correctly on only 10.25% of the items in P. (See Figures 1a 
and 1b.)  In addition, we measured the number of epochs required for both networks to 
relearn P. Not surprisingly, HPBP also relearned P to criterion in 42% fewer epochs than the 
BP network. 
 Although much work clearly remains to be done on this type of algorithm, we believe that 
these early results demonstrate that the HPBP algorithm can be very effective in reducing 
catastrophic interference.  
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Figure 1a. Errors on the originally learned 
patterns in set P for BP and HPBP after 
learning set Q.  

Figure 1b. Correct generalization for the 
originally learned items for BP and HPBP 
after learning Q. 
 

Simulation 2:  Sequential Learning 
 
In order to further test the HPBP algorithm on a sequential learning task drawn from a real-
world database, we selected the 1984 Congressional Voting Records database from the UCI 
repository (Murphy & Aha, 1992). Twenty members of Congress (10 Republicans, 10 
Democrats, each “pattern” being defined a yes-no voting record on 16 issues associated with 
a party affiliation) were chosen randomly from the database and were learned sequentially by 
the network (i.e., each pattern was learned to criterion before the next pattern was presented 
to it). The network was then tested with both standard measures of forgetting on each of the 
twenty patterns.  
 Both BP and HPBP algorithms used a 16-3-1 feedforward backpropagation network was 
used, with a learning rate of 0.01, momentum of 0.9, a Fahlman offset of 0.1, with a 
maximum weight step of 0.09.  For the HPBP network, 25 pseudopatterns were generated 
each time a new pattern was to be learned. The weighting parameter associated with the 
approximation of the original error surface was set to 3. 
  For each new pattern that was sequentially learned, 25 pseudopatterns were generated 
to calculate the Hessian and, thereby, to produce the approximation of the prior error surface. 
Specifically, the network learned the first pattern, P1, until the difference between target and 
output for the pattern was below 0.2. Then 25 pseudopatterns were generated and the 
associated error surface was produced. The second pattern, P2, was then presented to the 
network. The new error surface induced by P2 was then combined with the previously 
approximated error surface and gradient descent was performed on this combined surface 
until the network had learned P2. Then 25 new pseudopatterns were generated to produce an 
approximation of this error surface. P3 was then presented to the network, etc. 
 
Results 
  First, we considered the extent to which the addition of the approximated error surface 
made the initial learning more difficult. Second, once the network had sequentially learned all 
twenty patterns, we measured the error for each of the previously learned patterns (i.e., the 
error measure of forgetting). Finally, examined how difficult it was to relearn the original 
patterns (i.e., the savings measure of forgetting described above). 
 All of the data reported was averaged over 100 runs of each algorithm. The order of 
presentation of the patterns and the initial weights of the networks were randomized at the 
beginning of each run. 



 9

 
Original learning 
 
Figure 2 shows that, on average, it is more difficult for HPBP to learn the first few patterns. 
Presumably, this is because, before any learning of the patterns has occurred, )(wE

)
defines 

an error surface that is quite unlike the error surface associated with that of any of the 
twenty patterns to be learned (because the network weights are initialized randomly). 
However, the average number of epochs required for learning the items with HPBP soon 
converges to that of BP.  
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Figure 2. Original learning of the 20 items. It is somewhat harder for the Hessian 

pseudopattern network to learn the first few patterns, given the “inertial” effect 
of )(wE

)
. Standard error bars show the evolution of the variance for both algorithms. 

 
Error measure of forgetting 
 
Finally, we computed average and median error scores for both HPBP and BP for each item 
after each network had sequentially learned all 20 items. The influence of the noise-computed 
error-surface in reducing these errors can be seen in Figures 3 and 4. All results were 
averaged over 100 runs. Standard error bars are shown for the values produced by each 
algorithm. 
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Figure 3. Average error measures for the 20 sequentially learned patterns. The average 
overall error for HPBP is 0.05 better than for standard BP. The learning criterion is 0.2. 
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Figure 4. Median errors for BP and HPBP for all items after sequential learning of the 
original patterns. For HPBP all 20 patterns remain at or below the 0.2 learning 
criterion; only 9 of the 20 items are at or below criterion for BP. 

 
Savings measure of forgetting 
 

The most striking improvement with respect to standard BP can be seen in the average 
re-learning time for each of the individual items (Figures 5 and 6). First, all twenty patterns 
are learned to criterion one after the other by the network. After the 20th pattern has been 
learned, the network’s weights, w final, are saved. Then each of the first 19 items is tested to 
see how many epochs the network requires to relearn it. Specifically, the first pattern in the 
list is given to the network and it relearns that pattern to criterion, the number of epochs 
required for re-learning being recorded. The network weights are then reset to wfinal. The 
second pattern in the list is then re -learned to criterion by the network and the number of 
epochs required to do so is recorde d, and so on.  

Overall, relearning is about 45% faster for the patterns learned by the HPBP network 
compared to BP (30.8 epochs for BP vs. 16.9 epochs for HPBP). In short, with HPBP, there 
is still forgetting, but it is “shallower” forgetting, (i.e., re-learning of the previously learned 
patterns is significantly easier for HPBP than BP).   
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Figure 5 . Average relearning times for all 20 patterns after the network has learned 
them sequentially.  Standard error bars are shown for the means for each pattern in the 
sequence. 
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Figure 6. The proportion of patterns requiring no relearning is significantly higher for 
HPBP than for BP. 

 
Discussion 
 It is clear that HPBP shows improved forgetting performance compared to standard 
backpropagation. However, there are a number of issues concerning the generality and 
computational complexity of this algorithm that must be addressed. We will briefly discuss 
the quality of the approximation of )(wE by )(ˆ wE  and whether or not HPBP would scale to 
larger networks. 
 The quality of the approximation of E(w) by Ê(w) is largely dependent on three factors: 
i) the form of the original error surface, ii) the choice of pseudopatterns, and iii) the 
divergence from 0w . If we assume that the error surface close to 0w  is approximately 
quadratic, then in this neighborhood we would need only as many points as there are degrees 
of freedom in the weights to determine the shape of the bowl. Since we assume a quadratic 
approximation, as the network grows in size, the number of pseudopatterns required to 
determine the approximation should scale with the number of weights. Finally, the further 
we move from 0w , the less accurate the Taylor series expansion of E will be.  

HPBP, as we have said, requires only first-order derivative information and thus is 
has a complexity of O(n2) where n is the number of weights. Further, there exists an O(n) 
approximation of the Hessian (Le Cun, 1987; Becker & Le Cun, 1988) that could also be 
produced by pseudopatterns. This would ensure that scaling would be linear in the number of 
weights. Further, this approximation of the Hessian has only diagonal elements and, as a 
result, weight changes in the HPBP algorithm would require only local information. 
Explorations of the scaling performance of the network with the diagonal approximation to 
the Hessian are needed.  
  
Conclusions 
 We have presented a connectionist learning algorithm that significantly improves network 
forgetting performance by turning noise to its advantage. A number of authors have shown 
that a certain amount of noise can enhance the performance of various systems in a wide 
range of contexts. For example, Linsker (1988) has shown elementary perceptual detectors 
can emerge from noise. Numerous authors (e.g., Collins, Chow & Imhoff, 1995; Grossberg & 
Grunewald, 1997; Sougné, 1998; etc.) have shown how the addition of noise to neural 
networks can enhance weak signal detection. In a neurobiological setting, Douglass, Wilkens, 
Pantazelou & Moss (1993), Bezrukov & Vodyanoy (1995) and others have shown that 
optimal noise intensity in biological neurons can enhance signal detection.  
 In this paper, we have shown how noise can be harnessed to improve  memory 
performance in feedforward backpropagation networks. We believe that this work, and the 
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work by others on related problems, represent the tip of the iceberg in the exploration of how 
noise can be turned from a problem into a performance-enhancing advantage. 
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Appendix 1 
 
In order to approximate the error surface associated with the originally learned patterns by 
means of pseudopatterns, it is sufficient to calculate the terms of the Hessian matrix. The 
Hessian matrix evaluated at wo is defined as follows: 
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where 0w
r

is the vector of weights ),,,,( 00
3

0
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0
1 Nwwww L  which was a solution for the originally 

learned set of patterns. 
 We have shown in (7) that for any two weights, wi and wj in a network with Noutputs output 
nodes and for N?  pseudopatterns, the <i,j> th term of the Hessian matrix is:  
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 For each pseudopattern and each output node (with output y) and for all pairs of weights 

iw  and jw , we calculate:  
ji w

y
w
y

∂
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∂
∂

. Each term of the Hessian matrix will be the sum over 

all output nodes and over all pseudopatterns. The notation conventions are as follows: 
ay :  the output from node a 

ay′ :  the first derivative of the squashing function, evaluated at ay . For the standard 

squashing function: xe
y −+

=
1

1  we have: )1( aaa yyy −=′  

OUTPUTN : number of output nodes 

abw , cdw  :  the weight from node b to node a, and from node d to node c 
There are three cases of pairs of weights to consider — namely:  
 
Case I : when abw , cdw ∈Hidden-Output layer 
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Case II: when abw ∈Input-Hidden layer and cdw ∈Hidden-Output layer 
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Case III: when abw , cdw ∈Input-Hidden layer 
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