
[French, R. M. and Chater, N. (2002). Using Noise to Compute Error Surfaces in Connectionist
Networks: A Novel Means of Reducing Catastrophic Forgetting. Neural Computation, 14, 1-15.]

Using Noise to Compute Error Surfaces in Connectionist Networks:

A Novel Means of Reducing Catastrophic Forgetting

Robert M. French
Quantitative Psychology & Cognitive Science

Psychology Department
University of Liège,
4000 Liège, Belgium
rfrench@ulg.ac.be

Nick Chater
Institute for Applied Cognitive Science

Department of Psychology
University of Warwick

Coventry, CV4 7AL, UK
nick.chater@warwick.ac.uk

Abstract

In error-driven distributed feedforward networks new information typically interferes,
sometimes severely, with previously learned information. We show how noise can be
used to approximate the error surface of previously learned information. By
combining this approximated error surface with the error surface associated with the
new information to be learned, the network’s retention of previously learned items
can be improved and catastrophic interference significantly reduced. Further, we
show that the noise -generated error surface is produced using only first-derivative
information and without recourse to any explicit error information.

 2

Introduction
 Everyone forgets but, thankfully, it is typically a gradual process. Neural networks, on the
other hand, and especially those that develop highly distributed representations over a single
set of weights, can suffer from severe and sudden forgetting. Almost all of the early solutions
to this problem, called the problem of “catastrophic forgetting,” relied on learning algorithms
that reduced the overlap of the network’s internal representations (see French, 1999, for a
review) by making these representations more sparse. This had the desired effect of reducing
interference with the obvious trade -off being a decrease in the network’s ability to generalize.
 A significantly different approach, one which made use of noise, was developed by
Robins (1995). The idea was as follows. When a network that had previously learned a set of
patterns had to learn a new set of patterns, a series of random patterns (i.e., noise) was input
into the network and the associated output was collected, producing a series of
pseudopatterns. These pseudopatterns, which reflected the previously learned patterns, were
then interleaved with the new patterns to be learned. This effectively decreased catastrophic
forgetting of the originally learned patterns. The use of pseudopatterns will serve as the
starting point for the algorithm developed in the present paper. Unlike Robins’ algorithm,
however, we will use pseudopatterns to directly approximate the error surface associated with
the original patterns. This approximated error -surface will then be combined with the error
surface associated with the new patterns and gradient descent will be performed on the
combined error surface. This will be shown to significantly improve the network’s
performance on catastrophic forgetting.

Measures of forgetting
 There are two standard measures of forgetting in connectionist models, both of which are
related to standard psychological measures. The first is a simple error measurement. Suppose
a first set of patterns N

iiii OIP 1}:{ =→ has been learned to criterion by a network. A new set
M
iiii OIQ 1}:{ =→ is then learned to criterion. We measure the amount of network error

produced by each of the patterns in the first set.
 The second widely used measure of forgetting is an Ebbinghaus “savings” measure, first
applied to neural networks by Hetherington & Seidenberg (1989): After learning N

iiP 1}{ = and

then M
iiQ 1}{ = , we measure the number of epochs required to retrain the network to criterion on

the initial training set N
iiP 1}{ = . The faster the relearning, the less forgetting that is judged to

have occurred. We will use both of these measures in the discussion that follows.

Overview of Hessian Pseudopattern Backpropagation (HPBP)
 Any given set of patterns N

iiii OIP 1}:{ =→ has an associated error surface,)(wE , defined
over the network’s weights. This means that for each possible combination of values of the
network’s weights, there will be an overall error associated with the set of patterns (usually,
the sum of the squared errors produced by each individual pattern, iP). Learning the set of

patterns N
iiP 1}{ = is equivalent to the network’s finding a minimum — call it 0w — of this error

surface.
 When a new pattern, newP , is presented to the system, the original error surface)(wE

changes to)(wE newP . (For simplicity, we will discuss only the case where a single new
pattern is presented to the network, but the argument is identical for any number of new
patterns.) In general, 0w , a minimum of the original error surface,)(wE , will no longer be a

 3

minimum of)(wE newP . In other words, the network “forgets” the original error surface
)(wE . What we need is some way for the network to approximate)(wE in the absence of

the original patterns. We could then create a new overall error surface that would reflect both

)(wE and)(wE newP . We do this by taking a weighted sum of the approximation of)(wE ,

which we will call)(ˆ wE , and)(wE newP . Our weight change algorithm will then be gradient
descent on this combined error surface. In what follows we will develop the mathematics of
HPBP and will demonstrate the algorithm by means of two simple simulations on empirical
data, one in which we sequentially learn two sets of patterns to criterion, the other in which
the network is presented with a series of patterns, each of which is learned to criterion before
the presentation of the next pattern.

Noise and the calculation of an error surface
 Assume, as above, that)(wE is the unique error surface defined by a set of real input-

output patterns N
iiii OIP 1}:{ =→ learned by the network. The network’s having learned these

patterns means it has discovered a local minimum 0w in weight-space for which 0)(0 =′ wE
where)(wE ′ represents the first derivative of the error function.
 If the function f underlying the original set of patterns is relatively “nice” (i.e.,
continuous, reasonably smooth, etc.), then a set of pseudopatterns M

iiii OI 1}:{ =→
))

ψ whose
input values are drawn from a flat random distribution will produce a reasonable
approximation of f. (See French, Ans, & Rousset, 2001, for a discussion of how this
approximation could be improved by additionally making use of the values of the output
associated with each random input, or Ans & Rousset, 2000, for a technique that produces an
“attractor” input pattern from uniform random input. In the present case, however, we simply
use flat random input to produce the pseudopatterns.) Just as the original set of patterns

N
iiP 1}{ = had a unique error surface associated with it, so does the set of pseudopatterns M

ii 1}{ =ψ .

For this latter error surface,)(wE
)

, it follows from the definition of pseudopatterns that
0)(0 =wE

)
 and 0)(0 =′ wE

)
. The question is how can we produce this approximation of the

original error surface in the vicinity of 0w (assuming that the original patterns N
iiP 1}{ = are no

longer available).
 We know that for the original error surface)(wE , 0)(0 =′ wE . While this tells us that

0w is a local minimum of E, it does not provide any information about the about the shape (in

particular, the steepness) of)(wE around 0w , which is what we want. For this we need the
higher derivatives of)(wE , which, unlike the first derivative, do not disappear when
evaluated at 0w . Using this steepness and the local minimum information, we reconstruct the
desired approximation of the original error surface by means of a truncated Taylor series.
(For other techniques using the higher-order derivatives to improve backpropagation, see, for
example, Bishop (1991), Becker & Le Cun (1988), etc.)
 Somewhat counter-intuitively, approximating the original error surface using noise does
not require any explicit error information; noise moving through the system is sufficient for
the calculation. Thus, unlike other techniques that make use of pseudopatterns which require
the system to learn a mixture of pseudopatterns and new patterns (Robins, 1995; French,
1997; Ans & Rousset, 1997, 2000), here noise is simply sent through the system, and this

 4

alone allows us to approximate the error surface around 0w . This approximated error surface,
combined with the error surface of the new patterns to be learned, produces an overall error
surface on which gradient descent will be performed.
 The details of this calculation are as follows.

Hessian pseudopattern backpropagation (HPBP)
 Assume that the network has already stored a number of patterns and has found a point wo
in weight space for which all the previously learned patterns have been learned to criterion.
Further assume that we are using the standard quadratic error function:

∑ ∑
= =

−=
P

p

N

i

p
i

p
i

outputs

tyE
1 1

2)(
2
1

 (1)

where
P is the number of patterns,
Noutputs is the number of output units in the network.

p
iy is the output of the ith output node for the p th pattern
p
it is the teacher for the ith output node for the pth pattern

E being a continuous, everywhere differentiable function, it has a Taylor series expansion
about wo which we can write as follows:

 ...)()(
!2

1
))(()()(00000

0
+−−+−′+= wwHwwwwwEwEwE w

T (2)

where:
w is a point in weight space
wo is the point in weight space at which the network has arrived after learning the original

patterns
)(0wE ′ is the gradient of E evaluated at wo and

0wH is the Hessian matrix of second partial derivatives of E evaluated at wo

For values of w sufficiently close to 0w we will assume that we can truncate the Taylor series
after the second term.
 Since the network is at 0w after having learned the original patterns, this implies that 0w

is a local minimum of the error surface and, consequently,)(0wE′ is 0. We can therefore
write the truncated Taylor series approximation of the error surface corresponding to the
originally learned set of patterns as:

)()(
!2

1
)()(ˆ

000
0

wwHwwwEwE
w

T −−+≈ (3)

Now assume that a new pattern, P, is presented to the network. This pattern induces an error
surface,)(wE P . (Note: as mentioned above, the argument is the same for a set of new
patterns.)

Let)()()(wEwEwE P+=
)

α

where the constant, α, is a weighting factor.
The standard delta rule gives:

 5

w
E

w
∂
∂−=∆ η where

w
E

w
wE

w
E P

∂
∂+

∂
∂=

∂
∂)(

)
α

But from (3) we have:

)(
)(

0
0

wwH
w
wE

w −=
∂

∂
)

 (4)

The weight change rule will therefore be

∂
∂+−−=∆

w
EwwHw

P

w)(0
0

αη (5)

where
η is the learning rate and
a is the weighting factor of the prior approximated error surface.

We will now show how noise allows us to calculate

0wH

Noise and the calculation of

0wH

 For each pseudopattern the teacher and the output will, by definition, be the same. In
other words,

 0)(=−∀∀ Ψ∈
ψψ

ψ nnn ty (6)

where
 Ψ is the set of all pseudopatterns
 yn is the output from the nth output node of the network
 tn is the teacher for the nth output node of the network.

The Hessian matrix evaluated at wo is defined as follows:

0

0 2

1

2

1

2

11

2

w
NNN

N

w

ww
E

ww
E

ww
E

ww
E

H

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

=

L

MOM

L

where 0w is a solution for the originally learned set of patterns.

Consider the <i,j>th term of H :

ji
ij ww

EH
∂∂

∂=
2

 6

We begin with the error function for the pseudopatterns
ΨNψψψψ ,,,, 111 K where NΨ is the

number of pseudopatterns that will be used to calculate the error surface:

 ∑ ∑
Ψ

= =
−=

N

p

N

n

p
n

p
n

outputs

tyE
1 1

2)(
2
1

where
ΨN is the number of pseudopatterns,

outputsN is the number of output units of the network
p
ny is the output of the n th output unit for the pth pseudopattern,
p
nt is the teacher for the nth output unit for the p th pseudopattern.

The second partial derivatives of E are calculated as follows.

∑ ∑

∑ ∑

∑ ∑

Ψ

Ψ

Ψ

= =

= =

= =

∂∂
∂

−+
∂
∂

∂
∂

=

∂∂
∂

−+
∂
∂

−
∂
∂

=

∂
∂

−
∂
∂

=
∂∂

∂

N

p

N

n ji

p
np

n
p

n
j

p
n

i

p
n

N

p

N

n ji

p
np

n
p

n
j

p
np

n
p
n

i

N

p

N

n j

p
np

n
p
n

iji

outputs

outputs

outputs

ww
y

ty
w
y

w
y

ww
y

ty
w
y

ty
w

w
y

ty
www

E

1 1

2

1 1

2

1 1

2

)(

)()(

)(

But we know from (6) that for pseudopatterns:

0)(=−∀∀ p
n

p
nnp ty

and, therefore, the second term above is zero, giving:

∑ ∑
Ψ

= = ∂
∂

∂
∂

=
∂∂

∂ N

p

N

n j

p
n

i

p
n

ji

outputs

w
y

w
y

ww
E

1 1

2

 (7)

 (The precise terms of the pseudopattern-induced Hessian matrix are given in Appendix 1.)

 Interestingly, only first derivative information is required in this pseudopattern-induced
Hessian, which means that the complexity of this calculation is)(2NO where N is the number
of weights in the network.
 In short, from (3) and (7) we conclude that noise passing through the network is sufficient
to approximate the error surface for the original patterns close to w0.

The pseudocode for the HPBP algorithm is shown below. We assume that the network

has already learned a set of patterns, P = { }N
iiP 1= and is at a point local minimum w0 in weight

space. The network must the n learn a new data set, Q = { }M
iiQ 1= . To create the Hessian, we

use R pseudopatterns.

 7

Initialize the Hessian to 0.
Set network activation values to 0.
Hessian Loop:

Put random input vector through the network to produce a pseudopattern;
Use these activation levels and network weight values to create a matrix of second-

derivative values to be added to the Hessian
0wH ;

Exit Hessian Loop after R pseudopatterns;
Training Loop: For each pattern in Q, do:
 Feedforward pass;
 Error backpropagation, changing the weights according to (5), including momentum;

When all patterns in Q are learned to criterion, exit Training Loop;
Test errors for all patterns in P.

Simulations
 In order to show that the HPBP algorithm works, we performed two simulations, the first
involving catastrophic forgetting and the second involving sequential learning.

Simulation 1: Catastrophic forgetting

We created two sets of four patterns, P and Q. The two sets were intentionally designed to
maximally interfere with one another (even though a network would have been able to learn
all patterns in the combined set P ∪ Q). The network was trained first on P and then on Q.
Once it had learned Q to criterion, we tested it to see how well it had remembered P. An 8-
32-1 network was used for both BP and HPBP networks with learning rate 0.01, momentum
0.9, Fahlman offset 0.1, and with a maximum weight-change step size of 0.075. For the
HPBP network we used 100 pseudopatterns and, because we wanted to give more weight to
approximated error surface associated with past learning, we set its weighting factor to 8. All
results were averaged over hundred runs of the program.

Results
 After learning the first set of patterns P, then Q, the standard backpropagation network
produced an average error over all items in P of 0.80. (Thus, as intended, interference of the
items in P by the items in Q was extremely severe.) By contrast, the HPBP network produced
an average error for these previously learned items of only 0.38. Further, the HPBP network
correctly generalized on 67.5% of the previously learned items, whereas the backpropagation
network was able to generalize correctly on only 10.25% of the items in P. (See Figures 1a
and 1b.) In addition, we measured the number of epochs required for both networks to
relearn P. Not surprisingly, HPBP also relearned P to criterion in 42% fewer epochs than the
BP network.
 Although much work clearly remains to be done on this type of algorithm, we believe that
these early results demonstrate that the HPBP algorithm can be very effective in reducing
catastrophic interference.

 8

0.80

0.38

0

0.2

0.4

0.6

0.8

1

BP HPBP

Algorithm

A
v.

 e
rr

o
r

10.25

67.5

0

20

40

60

80

100

BP HPBP

Algorithm

%
 c

or
re

ct

Figure 1a. Errors on the originally learned
patterns in set P for BP and HPBP after
learning set Q.

Figure 1b. Correct generalization for the
originally learned items for BP and HPBP
after learning Q.

Simulation 2: Sequential Learning

In order to further test the HPBP algorithm on a sequential learning task drawn from a real-
world database, we selected the 1984 Congressional Voting Records database from the UCI
repository (Murphy & Aha, 1992). Twenty members of Congress (10 Republicans, 10
Democrats, each “pattern” being defined a yes-no voting record on 16 issues associated with
a party affiliation) were chosen randomly from the database and were learned sequentially by
the network (i.e., each pattern was learned to criterion before the next pattern was presented
to it). The network was then tested with both standard measures of forgetting on each of the
twenty patterns.
 Both BP and HPBP algorithms used a 16-3-1 feedforward backpropagation network was
used, with a learning rate of 0.01, momentum of 0.9, a Fahlman offset of 0.1, with a
maximum weight step of 0.09. For the HPBP network, 25 pseudopatterns were generated
each time a new pattern was to be learned. The weighting parameter associated with the
approximation of the original error surface was set to 3.
 For each new pattern that was sequentially learned, 25 pseudopatterns were generated
to calculate the Hessian and, thereby, to produce the approximation of the prior error surface.
Specifically, the network learned the first pattern, P1, until the difference between target and
output for the pattern was below 0.2. Then 25 pseudopatterns were generated and the
associated error surface was produced. The second pattern, P2, was then presented to the
network. The new error surface induced by P2 was then combined with the previously
approximated error surface and gradient descent was performed on this combined surface
until the network had learned P2. Then 25 new pseudopatterns were generated to produce an
approximation of this error surface. P3 was then presented to the network, etc.

Results
 First, we considered the extent to which the addition of the approximated error surface
made the initial learning more difficult. Second, once the network had sequentially learned all
twenty patterns, we measured the error for each of the previously learned patterns (i.e., the
error measure of forgetting). Finally, examined how difficult it was to relearn the original
patterns (i.e., the savings measure of forgetting described above).
 All of the data reported was averaged over 100 runs of each algorithm. The order of
presentation of the patterns and the initial weights of the networks were randomized at the
beginning of each run.

 9

Original learning

Figure 2 shows that, on average, it is more difficult for HPBP to learn the first few patterns.
Presumably, this is because, before any learning of the patterns has occurred,)(wE

)
defines

an error surface that is quite unlike the error surface associated with that of any of the
twenty patterns to be learned (because the network weights are initialized randomly).
However, the average number of epochs required for learning the items with HPBP soon
converges to that of BP.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pattern no.

N
o.

of
 e

po
ch

s

BP

HPBP

Figure 2. Original learning of the 20 items. It is somewhat harder for the Hessian

pseudopattern network to learn the first few patterns, given the “inertial” effect
of)(wE

)
. Standard error bars show the evolution of the variance for both algorithms.

Error measure of forgetting

Finally, we computed average and median error scores for both HPBP and BP for each item
after each network had sequentially learned all 20 items. The influence of the noise-computed
error-surface in reducing these errors can be seen in Figures 3 and 4. All results were
averaged over 100 runs. Standard error bars are shown for the values produced by each
algorithm.

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pattern no.

E
rr

o
r

BP
HPBP

Figure 3. Average error measures for the 20 sequentially learned patterns. The average
overall error for HPBP is 0.05 better than for standard BP. The learning criterion is 0.2.

 10

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pattern no.

E
rr

or BP

HPBP

Figure 4. Median errors for BP and HPBP for all items after sequential learning of the
original patterns. For HPBP all 20 patterns remain at or below the 0.2 learning
criterion; only 9 of the 20 items are at or below criterion for BP.

Savings measure of forgetting

The most striking improvement with respect to standard BP can be seen in the average
re-learning time for each of the individual items (Figures 5 and 6). First, all twenty patterns
are learned to criterion one after the other by the network. After the 20th pattern has been
learned, the network’s weights, w final, are saved. Then each of the first 19 items is tested to
see how many epochs the network requires to relearn it. Specifically, the first pattern in the
list is given to the network and it relearns that pattern to criterion, the number of epochs
required for re-learning being recorded. The network weights are then reset to wfinal. The
second pattern in the list is then re -learned to criterion by the network and the number of
epochs required to do so is recorde d, and so on.

Overall, relearning is about 45% faster for the patterns learned by the HPBP network
compared to BP (30.8 epochs for BP vs. 16.9 epochs for HPBP). In short, with HPBP, there
is still forgetting, but it is “shallower” forgetting, (i.e., re-learning of the previously learned
patterns is significantly easier for HPBP than BP).

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pattern no.

N
o

. o
f

ep
o

ch
s

BP

HPBP

Figure 5 . Average relearning times for all 20 patterns after the network has learned
them sequentially. Standard error bars are shown for the means for each pattern in the
sequence.

 11

0.62

0.47

0.0

0.2

0.4

0.6

HPBP BP

Figure 6. The proportion of patterns requiring no relearning is significantly higher for
HPBP than for BP.

Discussion
 It is clear that HPBP shows improved forgetting performance compared to standard
backpropagation. However, there are a number of issues concerning the generality and
computational complexity of this algorithm that must be addressed. We will briefly discuss
the quality of the approximation of)(wE by)(ˆ wE and whether or not HPBP would scale to
larger networks.
 The quality of the approximation of E(w) by Ê(w) is largely dependent on three factors:
i) the form of the original error surface, ii) the choice of pseudopatterns, and iii) the
divergence from 0w . If we assume that the error surface close to 0w is approximately
quadratic, then in this neighborhood we would need only as many points as there are degrees
of freedom in the weights to determine the shape of the bowl. Since we assume a quadratic
approximation, as the network grows in size, the number of pseudopatterns required to
determine the approximation should scale with the number of weights. Finally, the further
we move from 0w , the less accurate the Taylor series expansion of E will be.

HPBP, as we have said, requires only first-order derivative information and thus is
has a complexity of O(n2) where n is the number of weights. Further, there exists an O(n)
approximation of the Hessian (Le Cun, 1987; Becker & Le Cun, 1988) that could also be
produced by pseudopatterns. This would ensure that scaling would be linear in the number of
weights. Further, this approximation of the Hessian has only diagonal elements and, as a
result, weight changes in the HPBP algorithm would require only local information.
Explorations of the scaling performance of the network with the diagonal approximation to
the Hessian are needed.

Conclusions
 We have presented a connectionist learning algorithm that significantly improves network
forgetting performance by turning noise to its advantage. A number of authors have shown
that a certain amount of noise can enhance the performance of various systems in a wide
range of contexts. For example, Linsker (1988) has shown elementary perceptual detectors
can emerge from noise. Numerous authors (e.g., Collins, Chow & Imhoff, 1995; Grossberg &
Grunewald, 1997; Sougné, 1998; etc.) have shown how the addition of noise to neural
networks can enhance weak signal detection. In a neurobiological setting, Douglass, Wilkens,
Pantazelou & Moss (1993), Bezrukov & Vodyanoy (1995) and others have shown that
optimal noise intensity in biological neurons can enhance signal detection.
 In this paper, we have shown how noise can be harnessed to improve memory
performance in feedforward backpropagation networks. We believe that this work, and the

 12

work by others on related problems, represent the tip of the iceberg in the exploration of how
noise can be turned from a problem into a performance-enhancing advantage.

Acknowledgments
 This work has been supported in part by a grant from the European Commission HPRN-
CT-1999-00065. The authors would like to thank Anthony Robins and Dave Noelle for their
discussions of the ideas of this work. Particular thanks to Gary Cottrell and an anonymous
reviewer whose insightful comments contributed significantly to the quality of this paper.

References
Ans, B. & Rousset, S. (1997). Avoiding catastrophic forgetting by coupling two reverberating

neural networks. Academie des Sciences, Sciences de la vie , 320, 989 - 997
Ans, B. & Rousset, S. (2000). Neural Networks with a Self-Refreshing Memory : Knowledge

Transfer in Sequential Learning Tasks without Catastrophic Forgetting. Connection
Sciences, 12, 1, 1-19

Becker, S. & Le Cun, Y. (1988) Improving the convergence of back-propagation learning
with second order methods. In D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski,
(eds.), Proceedings of the 1988 Connectionist Models Summer School, San Mateo, CA,
1988. Morgan Kauffman. pp. 29–37.

Bezrukov, S. & Vodyanoy, I. (1995). Noise induced enhancement of signal transduction
across voltage-dependent ion channels. Nature, 378 , 362-364.

Bishop, C. (1991). A fast procedure for retraining the multilayer perceptron. International
Journa l of Neural Systems, 2(3), 229-236.

Collins, J., Chow, C. & Imhoff, T. (1995). Stochastic resonance without tuning. Nature, 376,
236-238.

Douglass, J., Wilkens, L., Pantazelou, E., & Moss, F. (1993). Noise enhancement of
information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365,
337-340.

French, R. M. (1997) Pseudo-recurrent connectionist networks: An approach to the
“sensitivity–stability” dilemma. Connection Science, 9 , 353-379.

French, R. M. (1999). Catastrophic Forgetting in Connectionist Networks. Trends in
Cognitive Sciences, 3(4), 128-135.

French, R. M., Ans, B., & Rousset, S. (2001). Pseudopatterns and dual-network memory
models: Advantages and shortcomings. In Connectionist Models of Learning,
Development and Evolution. R. French, J. Sougné (eds.). London: Springer-Verlag.

Grossberg, S. & Grunewald, A. (1997). Cortical synchronization and perceptual framing.
Journal of Cognitive Neuroscience, 9, 117-132.

Hetherington, P. & Seidenberg, M., (1989), Is there “catastrophic interference” in
connectionist networks?, In Proceedings of the 11th Annual Conference of the
Cognitive Science Society, 26-33, Hillsdale, NJ: LEA

Le Cun, Y. (1987). Modèles connexionnistes de l’apprentissage. Unpublished Ph.D thesis.
Université Pierre et Marie Curie, Paris, France.

Linsker, R. (1988). Self-organization in a perceptual network. Computer. March, 1988. 105-
117.

Murphy, P. & Aha, D. (1992). UCI repository of machine learning databases. Maintained at
the Dept. of Information and Computer Science , U. C. Irvine, CA

Robins, A. (1995). Catastrophic forgetting, rehearsal, and pseudorehearsal. Connection
Science, 7 , 123 - 146.

 13

Sougné, J. (1998). Period doubling as a means of representing multiply-instantiated entities.
Proceedings of the 20 th Annual Conference of the Cognitive Science Society. NJ:LEA.
1007-1012.

 14

Appendix 1

In order to approximate the error surface associated with the originally learned patterns by
means of pseudopatterns, it is sufficient to calculate the terms of the Hessian matrix. The
Hessian matrix evaluated at wo is defined as follows:

0

0 2

1

2

1

2

11

2

w
NNN

N

w

ww
E

ww
E

ww
E

ww
E

H

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

=

L

MOM

L

where 0w
r

is the vector of weights),,,,(00
3

0
2

0
1 Nwwww L which was a solution for the originally

learned set of patterns.
 We have shown in (7) that for any two weights, wi and wj in a network with Noutputs output
nodes and for N? pseudopatterns, the <i,j> th term of the Hessian matrix is:

∑ ∑
Ψ

= = ∂
∂

∂
∂

=
∂∂

∂
N

p

N

n j

p
n

i

p
n

ji

outputs

w
y

w
y

ww
E

1 1

2

 For each pseudopattern and each output node (with output y) and for all pairs of weights

iw and jw , we calculate:
ji w

y
w
y

∂
∂

∂
∂

. Each term of the Hessian matrix will be the sum over

all output nodes and over all pseudopatterns. The notation conventions are as follows:
ay : the output from node a

ay′ : the first derivative of the squashing function, evaluated at ay . For the standard

squashing function: xe
y −+

=
1

1 we have:)1(aaa yyy −=′

OUTPUTN : number of output nodes

abw , cdw : the weight from node b to node a, and from node d to node c
There are three cases of pairs of weights to consider — namely:

Case I : when abw , cdw ∈Hidden-Output layer

()

≠
=′=′′

=
∂∂

∂
caif
caifyyyyyyy

ww
E dbadcba

cdab 0
))((22

Case II: when abw ∈Input-Hidden layer and cdw ∈Hidden-Output layer

() () acdbcaacadcba
cdab

wyyyywyyyyy
ww

E ′′=′′′=
∂∂

∂ 2
2

))((

Case III: when abw , cdw ∈Input-Hidden layer

() ()∑∑
==

′′′=′′′′=
∂∂

∂ OUTPUTOUTPUT N

i
iciaidbca

N

i
iciiaidcba

cdab

wwyyyyywywyyyyy
ww
E

1

2

1

2

)())((

