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Abstract 

An unusual category learning asymmetry in infants was 
observed by Quinn et al. (1993). Infants who were initially 
exposed to a series of pictures of cats and then were shown a 
dog and a novel cat, showed significantly more interest in the 
dog than in the cat. However, when the order of presentation 
was reversed —  i.e., dogs were seen first, then a cat and a 
novel dog — the cat attracted no more attention than the 
novel dog. A series of experiments and simulations seemed to 
show that this asymmetry was due the perceptual inclusion of 
the cat category within the dog category because of the 
greater perceptual variability of dogs compared to cats 
(Mareschal & French, 1997;  Mareschal et al., 2000; French 
et al., 2001, 2004). In the present paper, we explore whether 
this asymmetric categorization phenomenon generalizes to the 
auditory domain. We developed a series of sequential 
auditory stimuli analogous to the visual stimuli in Quinn et al. 
Two experiments on adult listeners using these stimuli seem 
to demonstrate the presence of an identical asymmetric 
categorization effect in the sequential auditory domain. 
Furthermore, we simulated these results with a connectionist 
model of sequential learning.  Together with the behavioral 
data, we can conclude from this simulation that, as in the 
infant visual categorization experiments, purely bottom-up 
processes were largely responsible for our results. 

Introduction 
A number of years ago, Quinn, Eimas & Rosencrantz 
(1993) and Eimas, Quinn, & Cowan demonstrated an 
unexpected asymmetry in category acquisition in young 
infants.  When 3- to 4-month-old infants were shown 
different photographs of either cats or dogs they were able 
to form perceptual categories of either groups of pictures. 
Infants who were first shown a number of different 
photographs of cats and are then a picture of a dog along 
with a picture of a novel cat will be more attentive to the 
dog than to the novel cat. This was interpreted as showing 
that the infants had formed a Cat category that excluded 
dogs. However, infants who were first shown different 
photographs of dogs and then a picture of a cat along with a 
novel dog were not preferentially attentive to either picture. 
 This surprising finding was interpreted as showing that 
infants had formed a Dog category that included cats. In 
other words, infants show an exclusivity asymmetry in their 
development of some perceptual categories. Thus, the Dog 
category does not exclude cats whereas the Cat category 
excludes dogs. 
 Between 1997 and 2004, a number of papers were 
published that attempted to explain and expand on these 
findings. (Mareschal & French, 1997;  Mareschal et al., 
2000; French et al., 2001, 2004; etc.) These experiments  
seemed to demonstrate that the key relationship that 

produced these results was that the smaller variability of the 
Cat category compared to the Dog category, meant that, 
perceptually, the latter category largely subsumed the 
former.  This meant that bottom-up, purely perceptual 
mechanisms were enough to explain the categorization 
asymmetry observed by Quinn and colleagues.  
 The authors manipulated the variability of the Dog and 
Cat categories by selecting, in one experiment, a set 
different races of dogs with little variability and a set of cats 
with a much greater variability.  In this way, even though 
the high-level categories (i.e., Dog and Cat) remained 
unchanged, their low-level perceptual variability had been  
reversed. The connectionist model that had been developed 
and which relied only on the statistical distributions of the 
features of the two categories, predicted a reversal of the 
original asymmetric categorization.  This is, indeed, what 
the authors found.  As a result, the authors were able to 
conclude that the infants were relying exclusively on 
statistical (i.e., bottom-up) properties of the stimuli in their 
category discrimination.   

The acoustic domain 
This ability of young infants to discriminate between two 
categories of complex visual stimuli in a purely bottom-up 
manner -- i.e., in the absence of any conceptual knowledge 
of the stimuli -- led us to wonder if there might be an 
analogous  phenomenon in the acoustic domain.   
 Although the perception of music relies on many 
different perceptual dimensions, such as timbre, loudness, 
rhythm, and pitch, one of the most salient features of music 
is that of pitch. Pitch perception is, indeed, fundamental to 
melody in music. When memorizing a tune, people do not 
represent the melody as a series of independent pitches, but 
process each pitch relative to the others. This leads to the 
fundamental notion of musical interval. The “sequential 
distance” between two notes can be measured by the 
chromatic interval (Krumhansl, 1990) seems to be the basic 
unit in the memorization of melodies. Plantinga & Trainor 
(2005) showed that infants store melodies in terms of 
relative pitches and not absolute pitches.  

Asymmetric effects in music perception 
In perception of musical style, Bigand & Barrouillet (1996) 
claimed that (non-musician) participants who were 
familiarized with selections of Baroque music (narrow 
category, Bach) and then tested on a novel Baroque piece 
versus a selection of early 20th century tonal musical (e.g., 
Debussy), showed an significantly increased interest in the 
early 20th century selection.  On the other hand, when 
participants were familiarized with selections of early 20th 
century music and then tested on a novel selection of early 
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20th century music versus a Baroque piece, there was no 
increased interest in the Baroque piece.   
 In light of these results and the asymmetric visual 
categorization asymmetry observed in infants, we decided to 
attempt to explore this phenomenon in a controlled acoustic 
environment using artificially produced musical stimuli 
presented to non-musician participants.   

Experiment 1 
The aim of this experiment was to assess an effect of 
interval distribution in the formation of melodic categories. 
To this end, we compared the exclusivity of auditory 
sequential categories formed during exposure to exemplars 
of melodies, statistically controlled in terms of their interval 
distributions.  In this experiment we attempted to reproduce 
the category inclusion and distribution relationships that 
produced the asymmetric categorization results in Quinn et 
al., 1993 (see Figure 1). 
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Figure 1: General inclusion and variability of the feature 
distributions for Dogs and Cats in Quinn et al., 1993. 

Participants 
51 undergraduates psychology students from the University 
of Burgundy, all non-musicians, took part in the experiment.  

Material 
For each participant, two sets of melodies were created, one 
following a narrow distribution, the other a broad 
probability distribution of the occurrence of 11 different 
musical intervals (see Figure 2). Each melody was built with 
5 consecutive intervals (e.g. 6 pitches), randomly chosen 
according to one of the distributions. Each set consisted of 
72 sequences. The start note of the melodies was 
counterbalanced between the 12 possible pitches (yielding 6 
different melodies per start-note). Each participant was 
randomly assigned one of the two distributions.  
 Even though specific intervals associated with each 
probability used in both the training and test phases are 
varied over participants, the probability of occurrence of 
these intervals followed one the two distributions shown in 
Figure 2 (i.e., either narrow or broad).  This was done to 

counterbalance the effect of prominence of some particular 
intervals in the process of melodic categorization.  

 
Figure 2:  Probabilities of occurrence of 11 musical 
intervals, for the narrow (gray) and broad (black) 

conditions. 
 
Melodies were synthesized with a MIDI synthesizer 
software (using the piano bank). Each tone was randomly 
played for either 250 or 500 ms, giving more “musicality” to 
the pitch sequences (in order to alleviate listener fatigue). 
 A further feature that is of particular importance in 
melodic perception is the contour, or the pattern of ups (+) 
and downs (–) of pitches from one note to the other (see 
Dowling & Harwood, 1986). The contour of each melody 
was random, and there was no repetition of contour/interval 
patterns within the same set of melodies. 

Procedure 
Each participant was exposed to 84 pitch sequences. The 
first 60 sequences — which constituted the training phase 
— were exemplars drawn from one of the two distributions. 
The 24 remaining items — which constituted the test phase 
— were composed of 12 new items from the training 
distribution, and of 12 items from the other distribution. 
These last 24 items were randomly ordered.  
 A presentation program was written within MATLAB 
programming language. Melodies were played through 
headphones. At the end of the pitch sequence, participants 
were then asked if they thought they had previously heard 
the melody during the training session. The inter-trail 
interval between the subject's answer and the sounding of 
the next  melody was 2 seconds. 

Results 
For each participant, the correct-response rate (percentage 
of correct recognition of the participant's training 
distribution) during the test phase was computed. Single-
group t-tests were used to compare the performance of each 
group to chance levels (50%).   
 The broad group performance (50%) was not 
significantly different from chance, t(24)=0, p=1, whereas 
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the narrow group's performance (55.6%) was significantly 
above chance, t(25)=2.42, p=0.023. This suggests that the 
narrow group learned aspects of the interval statistics of the 
narrow items, allowing them to recognize new melodies 
from this distribution appropriately. 
 

 
Figure 3:  Mean endorsement rate during test phase for the 
broad group (left) and the narrow group (right). Error bars 

represent standard errors. 
 
 We then analyzed the endorsement rate (i.e., percentage 
of accepted test items) for both groups, for new broad and 
new narrow items (Figure 3). A 2x2 mixed-ANOVA 
(broad/narrow training condition x broad/narrow test items) 
revealed a significant main effect of test items 
(F(1,49)=4.51, p<.05). In other words, as in the Quinn et 
al.’s (1993) Dog-Cat studies, participants familiarized with 
the narrow (i.e., low-variability) stimuli excluded more 
contrasting items (in this case, new broad items), whereas 
participants familiarized with the broad (i.e., high-
variability) category rejected narrow items at no better than 
chance.  This mirrors the inclusion/exclusion relationships 
observed in Quinn et al. (1993)’s stimuli.   

Experiment 2 
In light of the results of the first experiment, we decided to 
tighten the constraints on the statistical properties of the 
sequences of notes comprising the melodies for the broad 
and narrow categories.  This was done in order to determine 
if it was possible to enhance the effects found in the first 
experiment.  In addition, during training, we decided to use 
a more incidental memory task.   

Participants 
24 students from the University of Burgundy, all non-
musicians and having not participated to the experiment 1, 
took part in the experiment.  

Material 
Melodies were generated by a Markov process, yielding 
highly constrained Markov chains, where the probability of 

a specific event i, depends on the occurrence of a prior 
event. We used a 1st-order Markov model, which can be 
represented using a 2-dimensional transition matrix. The 
probability of a given event depends only on the event 
immediately preceding it.  
 
Table 1: Transitional probabilities between pitches, for the 

broad distribution (in black in figure 4). 
 To pitch 

 end 1 2 3 4 5 6 

start .1 .25 .15 .15 .2 .2 .1 

1 .2 .15 .15 .1 .25 .1 .2 

2 .1 .1 .15 .15 .2 .2 .25 

3 .1 .2 .15 .15 .2 .1 .25 

4 .1 .2 .2 .15 .15 .25 .1 

5 .1 .25 .15 .1 .15 .2 .2 

Fr
o
m 
pit
ch  

6 .1 .1 .25 .2 .15 .2 .15 

 
A sequence is built by selecting a start-note according to the 
probabilities of the “start” row, selecting the second note 
according to its probability of occurrence after the first note, 
cycling throw the table until the “end” column is reached 
(see table 1). The transitional probabilities between a note 
and the 6 possible following ones (plus the “end” code) 
followed either a broad or a narrow distribution (Figure 4).  
 

 
Figure 4:  Probabilities of occurrence of the 7 transitions, in 

narrow (gray) and broad (black) conditions. 
 
The transition matrices for the two categories were 
associated with four different pitch-sets (notes 1-6 in Table 
1) : C4/D4/D#4/F4/G#4/A#4, D#4/F4/F#4/G#4/B4/C#4, 
A3/B3/C4/D4/F4/G4 or F#4/G#4/A4/B4/D4/E4, to avoid 
specific effects associated with one or the other pitch-set. 
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Note that the musical intervals between each adjacent notes 
is identical across the 4 sets. 
 70 melodies were generated per condition, 60 of them 
being used as exemplars in a training phase. In the test 
phase, 20 pairs of melodies were used, composed of the 10 
remaining sequences of the training condition, and of 10 
sequences of the contrasting distribution. Each pair 
consisted of one melody from each set. The order within 
pairs was counterbalanced. The number of tones for each 
melody in both group varied from 4 to 7 (µnarrow 5, µbroad : 
4.7). Tones’ duration and contour were controlled as in 
Experiment 1.  

Procedure 
Participants were seated in front of a computer. Melodies 
were played through headphones. In a first phase, 
participants were asked to listen to the melodies, and to 
report the total number of pitches of each sequence. 
Feedback was given after each answer, indicating whether 
or not their reply was correct, and if not, reporting the right 
number of pitches.  The inter-trail interval between the 
subject's answer and the next melody was 2 seconds. In a 
second phase, participants heard pairs of melodies. They 
were then asked to select, for each pair, the melody most 
similar to the ones they had heard in the first phase. Both 
groups had 12 participants. 

Results 
First, the data obtained from the training phase was 
analysed. The mean number of correct responses was 
calculated for each participant. This score was high for both 
groups (broad group : 88% (SD: 7.5), narrow group:   
83.3% (SD: 11.1)). The pitch-counting task was relatively 
easy for the participants. The participants’ strategy seemed 
to generally be to rehearse the melody, pitch by pitch, after 
hearing it. A 2-tailed t-test conducted with groups as the 
independent variable, and percentage of correct responses 
during the training phase as dependent variable yielded no 
significant effect, t(22)=1.21, p>.2, showing that melodies 
from both sets were not processed significantly differently 
according to the task  (counting the tones). 
 The second set of analyses concerned the test phase. 
Here again, our results closely resembled those of the infant 
categorization experiments of Quinn et al., (1993).  The 
broad group performance (49.2%) was not significantly 
different from chance, t(11)=-0.3, p>0.7, whereas the 
narrow group's performance (57.5%) was significantly 
above chance, t(11)=3.95, p=0.023.  
A 2x2 mixed-ANOVA (broad/narrow training condition x 
broad/narrow test items) revealed an effect of test items 
(F(1,22)=6.25, p=.02), but no significant main effect of 
training nor a significant interaction (Figure 5).  
 These results suggest that participants in the narrow 
condition learned the statistical distribution of the 
sequences, in terms of musical intervals, allowing them to 
recognize new melodies drawn from this distribution, 

whereas participants within the broad condition performed 
at chance level. 
 

 
Figure 5 :  Mean endorsement rate during test phase for the 
broad group (left) and the narrow group (right).  Error bars 

represent standard errors. 

Discussion 
Experiment 2 confirmed and enhanced the effects observed 
in the first experiment.  
 The material used in these experiments was “music-like,” 
rather than “musical,” because although the stimuli were 
constructed with musical pitches, they could not have been 
encountered in a natural musical environment. So, it seems 
unlikely that top-down knowledge  could have been 
responsible for the asymmetry we observed. However, to 
confirm that these results do not come from any influence of 
top-down musical knowledge, we tried to produce the 
results with a bottom-up connectionist model of sequence 
processing.  

Simulation 
The aim of the following simulation is to show that a purely 
bottom-up cognitive model, without any prior knowledge, 
can explain the results of our experiments. The main 
difference with the Quinn et al's visual stimuli resides in the 
sequential aspect of our auditory material. In fact, any 
attempt to simulate the asymmetric effect shown in 
experiments 1 and 2 must accommodate the sequential 
properties of the material. In order to model the process 
underlying the results described above, we used Simple 
Recurrent Network (SRN; Elman, 1990). These artificial 
neural networks are frequently used to encode sequential 
dependencies between elements of a sequence (see 
Cleeremans, 1993; Dienes 1993). 

Procedure 
The material used to train the networks is identical to that of 
Experiment 2, except that only one pitch-set was used, 
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instead of 4. We used a localist coding scheme, i.e. each 
note of a sequence is coded by a unique bit in a 7-elements 
vector (1 bit per note + a “start/end” bit). Two groups of 20 
SRNs were used, each being exposed to exemplars from 
either the narrow distribution, or the narrow one. 
 Each network was randomly initialized. Networks were 
composed of 7 input nodes, 3 hidden nodes and  7 output 
nodes. Hidden nodes used a sigmoïd transfert function, 
whereas output nodes used a linear activation function. 
 During the training phase, each item from a training set 
was presented twice consecutively. Stimuli were presented 
twice in order to simulate the strategy employed by 
participants: rehearsing the melody after hearing it (see 
Experiment 1). For each element of a sequence, the task of 
the networks was to predict the next  element of that 
sequence. A mean square error (MSE) is computed for each 
element, giving a measure of prediction accuracy (i.e the 
distance between the output computed by the network in 
response to an element and the actual desired output, that is, 
the next element in the sequence). Weights were updated at 
each time step, using a gradient descent with momentum 
training algorithm. The learning rate was set to .1, the 
momentum term to .4.  
 During the test phase, no weight change was allowed. 
Test items were presented in pairs, the order of items within 
each pair was random. The context units activation were 
reset to 0 between pairs, but not between items of a pair. 
This was meant to reflect the 2-alternative forced choice 
procedure of experiment 2. Within each test pair, the MSE 
was computed for each item. The sequence associated with 
the lowest MSE reflected the “choice” of the network. We 
then computed an endorsement rate for each test item type, 
across all test pairs.  

Results 
Figure 6 shows the mean endorsement rate for the two 
network groups, in response to new narrow and new broad 
items. 
 

 

Figure 6: Mean endorsement rate during test phase for the 
the broad and narrow trained-networks.  Error bars 

represent standard errors. 
 

The simulation results closely resemble those of the 
experiment 2; networks trained with exemplars drawn from 
the broad category cannot distinguish new items from both 
categories, whereas networks trained with items from the 
narrow category produce more accurate predictions about 
the element of the narrow sequences, yielding a higher 
endorsement rate for new items from their own category 
than from the other. Noting that these networks do not have 
any prior knowledge of the material we used, we can 
conclude that a simple connectionist model, which 
processes stimuli in a purely bottom-up fashion, is sufficient 
simulate our behavioral results.  

Conclusions 
These preliminary results suggest that the categorization 
asymmetry in young infants observed by Quinn et al. (1993) 
is not limited to the visual domain.  Rather, it is probable 
that this phenomenon also applies to auditory perception.  
Our results point to the importance of bottom-up (statistical) 
processing in the perception and categorization by non-
musicians of sequential auditory stimuli.   
 Meulemans and Van der Linden (1997) have shown that, 
in an artificial grammar learning task, participants exposed 
to a small subset of a grammar were sensitive to the 
similarity of the test items with the training items, whereas 
with longer exposure, this similarity effect disappeared. The 
similarity was measured as the mean probability of 
occurrence in the training set of the bigrams (2 consecutive 
elements in a sequence) and trigrams (3 consecutive 
elements) composing a test item. This implies that the 
statistical distribution of the different bigrams and trigrams 
in the training set had an effect on the ability of the 
participant to discriminate sequences from their own 
category (grammar) from distractors. This suggests that the 
asymmetrical effects we described in our experiments could 
be eliminated by the acquisition of syntactic rules governing 
the elements of musical pitches.  
 Finally, these results are limited to a single auditory 
dimension (pitch intervals).  It will also be necessary to 
investigate the influence of the myriad other dimensions of 
musical perception (e.g., duration, timbre, rhythm, etc.)  and 
the interaction among these various dimensions. 
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