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Introduction

The view that evolution is influenced by acquired behaviors and traits is regarded
by many as being uncomfortably close to the discredited Lamarckian contention that
evolution consists of the inheritance of acquired behaviors and traits.  It is perhaps for this
reason more than any other that the evolutionary mechanism first proposed first by J.
Mark Baldwin and Lloyd Morgan in 1896 [Baldwin, 1896; Morgan, 1896] is still veiled
in controversy.  This mechanism, known today simply as the Baldwin Effect, states that
learned behavior and characteristics at the level of individuals can significantly affect
evolution at the level of the species. Schull [1990] sums up the process as one in which
"individual developmental responses will necessarily lead to directed and non-random
evolutionary change."  And while many evolutionary biologists accept the Baldwin Effect
as a significant force in evolutionary change, the theory also has many detractors.  For
example, in a recent article, Piattelli-Palmarini [1990] writes, "One would have hoped
that, in 1990, all talk of the Baldwin effect . . . would have been mercifully forgotten."

Parisi, Nolfi , and Cecconi [1990] give three further reasons that evolutionary
biologists tend to dismiss the Baldwin Effect.  The orthodoxy of evolutionary biologists,
they claim, is strongly reductionist, “which implies that the causes and basic mechanisms
of evolution are only to be found at the level of genetics.”  As a consequence, behavior
and learning, both being highly holistic processes, have been largely ignored in
attempting to understand evolutionary processes. Another reason for the lack of attention,
according to these authors, is that evolutionary biologists feel “behavior and learning are
the province not of biology but of psychology and ethology.”  And finally, until recently,
there have been very few empirical studies of the Baldwin Effect in either real or
simulated populations.     

In this paper, clear evidence is presented that the Baldwin Effect can indeed
significantly alter the course of Darwinian evolution at the level of the genotype.  In other
words, we show that plasticity at the phenotypic level can and does produce directed
changes at the genotypic level.  In addition, the amount of plasticity and the amount of
benefit of the learned behavior are also demonstrated to be crucial to the size of the
effect:  either too littl e or too much and the effect disappears or is significantly reduced.
Finally, we demonstrate certain conditions under which the Baldwin Effect is more
powerful in sexually reproducing populations than in asexually reproducing ones. This
research confirms and extends earlier experimental work done by Hinton & Nowlan
[1987], Belew [1990], Parisi, Nolfi, & Cecconi [1992], and Fontanari & Meir [1990],
among others.  
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We empirically tested various aspects of the Baldwin Effect on populations
similar to those described in Bedau [1993] and Holland [1993].  We created a large
population of agents with varying metabolic, feeding, locomotive and reproductive
characteristics and allowed them to evolve in a world in which the amount and
distribution of food varied over time.   We then examined the effects of phenotypic
plasticity on the evolution of the genotype.  Three different areas of plasticity were
considered — namely, more efficient metabolism, movement or reproduction. 

Genes and Phenes: an overview of the simulation

Our simulated world consists of a population of agents whose genetic material
consists of a fixed-length bitstring.  Food is regularly, but randomly, added to this world
in discrete piles of uniform depth, much as if someone were regularly throwing handfuls
of food into the world at random locations.  The size of the piles of food and the
frequency with which they are added to the world can vary.  Food is required for energy.
"Energy taxes" are levied for movement, reproduction and existence.   
        We stipulate that one particular genotype (i.e., one particular pattern of bits) — the
"Good Gene" or  GG, for short — will result in a fitness-enhancing behavior or trait —
the  "Good Phene" or GP — at the phenotypic level.  We assume that the closer an agent
is to the Good Gene (in terms of some metric on gene space), the easier it will be for it to
learn the Good Phene that will enhance survival and reproductive possibilities.  Phenes
can either be learned or be the direct product of the possession of a Good Gene.  A
“natural” Good Phene (one which is the direct result of having the Good Gene) and a
“learned” Good Phene are indistinguishable at the level of the phenotype.  Possessing the
Good Gene necessarily implies that its associated Good Phene will be expressed.      

In our simulations, the Good Phene can be one of three things:  improved
locomotive, metabolic or reproductive efficiency.  In each case, these were implemented
as a reduction in the default taxes on each of these activities.  In contrast to Hinton &
Nowlan [1987], our simulation incorporates no explicit "fitness function" [Holland, 1975]
to make an a priori determination of how good each genotype is.  In other models, an
explicit fitness function is generally used to determine the future reproductive success of
each genotype.  

In our model, however, the fitness of a particular genotype is determined
implicitly by how well it survives in the population over time.  The success of a particular
genotype, then, is a measure of the percentage of agents in the population that have it.
We are particularly interested in the evolution of the percentage of organisms in the
population with the Good Gene.  Specifically, we compare how often and under what
circumstances the Good Gene appears in a population with learning compared to a
population without learning.

Learning in the simulated world

Two factors will determine the extent to which the Good Gene will eventually
proliferate in the population, namely:
 

· the difficulty across the population of learning the Good Phene
(phenotypic plasticity); 
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· the amount of benefit conferred on an agent by having learned the
Good Phene.

   
First, let us consider phenotypic plasticity.  We assume that each agent is born

with a genotype that is a certain hamming distance from the Good Gene.  Based on that
distance, the probability that an agent will learn the Good Phene associated with the
Good Gene is determined by a phenotypic plasticity curve like the one shown in Figure 1.
The x-axis represents the agent’s normalized hamming distance from the Good Gene (i.e.,
the number of bits differing from the Good Phene divided by the total number of bits) and
the y-axis shows the probability of learning the Good Phene.  Therefore if the agent is
genetically close to the Good Gene, it will stand a good chance of learning the
corresponding Good Phene.  As the normalized hamming distance from the Good Gene
increases, the probability of learning the Good Phene falls off.  The shape of the curve
depends on the Good Phene.  Phenes range from being very hard (or impossible) to learn
to comparatively easy to learn.  For example, consider a Good Phene that is relatively
hard to learn across the entire population (ρ is small; see Figure 4).   When the genotype
of a particular organism differs from the underlying Good Gene by half of its bits , it will
very little chance of learning the Good Phene.  Whether or not the agent will actually
learn the Good Phene is done stochastically based on the probability taken from its
phenotypic plasticity curve. 
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Figure 1:  A phenotypic plasticity curve (ρ = 0.1) showing the probability of learning a
Good Phene based on hamming distance from the Good Gene (if 20% of an agent’s bits

differ from the Good Gene, it will have a 15% chance of learning the Good Phene). 

Some Good Phenes are clearly harder to learn than others.  For example, the trait
of possessing blue eyes has no phenotypic plasticity.  Individuals who do not possess the
precise genotype that codes for blue eyes will never be able to learn this characteristic.  

Other traits and behaviors are easier to learn.  These are represented by the family
of phenotypic plasticity curves shown in Figure 2.  Each curve represents a different
amount of native plasticity for a particular Good Phene.  In a population where the
plasticity parameter ρ is very low, an agent has to have been born very close to the Good
Gene in order to have a chance of learning the Good Phene.  In essence, when ρ is very
low, the Good Phene is almost never learned.

However, as ρ increases, it becomes possible for some members of the population
to actually learn the Good Phene.  For example, consider the ability to hum Middle C.
Some people can do it perfectly with no learning at all.  These people possess the Good
Phene — in this case, perfect pitch — from birth.  Presumably, there is something in their
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genes that allows them to perform this task flawlessly.  People who are genotypically a
bit farther from the Good Gene may still be able to learn to hum Middle C, eventually,
but will have to adopt a variety of clever strategies to do so.  Most people, though, could
try forever and still never be able to hum Middle C correctly.  They are genetically too far
from the Good Gene.  This is a case of low, but non-zero, phenotypic plasticity. 

Now, consider the ability to memorize the written word.  Again, some people are
naturally very good at this particular task.  After reading a poem a few times, they can
recite it without errors.  For others, the task is much more difficult, requiring many hours
and clever mnemonic strategies, but given enough time, they will eventually memorize
succeed in memorizing the poem.  A relatively small, but significant number of
individuals in the population would never be able, try as they might, to learn the poem.
This is an example of average phenotypic plasticity.      
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 Figure 2:  Curves showing varying degrees of phenotypic plasticity:  y=1− xρ, 

where ρ is phenotypic plasticity associated with a particular Good Phene

Finally, certain behaviors are very plastic.  For example, if the Good Phene
consisted of "writing with your left hand" or “winking”, virtually everyone in the
population could master this.  The phenotypic plasticity, ρ, for this trait is very high.

A final comment about phenotypic plasticity.  For the purpose of the simulations
in this paper, the phenotypic plasticity of a particular Good Phene remains constant over
time, but in real animals phenotypic plasticity seems to decrease with age.  Consider, for
example, humans’ ability to learn foreign languages without an accent.  Most people are
born with an extraordinary phenotypic plasticity in this area (i.e., with ρ very high) but,
around the time of adolescence, this ability gradually seems to disappear.  Once
adolescence has passed, it is almost impossible to learn a new language without an accent
[Grosjean, 1982, p. 300].  

The second factor that plays a major role in the Baldwin Effect is the benefit to
the organism of the Good Phene.  If the advantage conferred by the Good Phene is too
low, then one would expect little movement of the population towards an increased
incidence of the corresponding Good Gene.  On the other hand, if the advantage
conferred is extremely high, then any organisms, however few, who manage to learn it
will beat out all competitors in the survival game.  The Good Gene, however rare to begin
with, will propagate and will soon come to dominate the population.  Consider an
extreme example that illustrates this point:  if the (Very) Good Phene were, say, "Energy
taxes drop to zero", then, even with no learning, once this Good Gene succeeded in
entering the population by a lucky mutation, it would stay in the population forever.  This
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would happen because the agent who happened to have been born with it would be able
to survive and reproduce even in the complete absence of food.

The real evolutionary value of the Baldwin Effect is that it gives good — but not
extraordinarily good — genes an improved chance of remaining in the population.
Extremely good genes will, in general, stay in a population.  The benefit they confer is
simply so overwhelming that they do not get washed out.  But the notion that an organism
could stumble upon a single Extraordinary Gene that would produce an Extraordinary
Phene smacks of saltationism [Mayr, 1988], whereby major, highly beneficial
evolutionary adaptations — such as the development of wings from forelegs —  suddenly
appear in the population.   If one accepts Darwinian gradualism, the value of the Baldwin
Effect as a mechanism for protecting moderately good phenes becomes apparent. 

Experimental results
 

In the following experiments, we will first demonstrate that, even with no explicit
fitness function, the Baldwin Effect can significantly influence evolving populations.  We
compare "Baldwin" populations (i.e., ones in which learning takes places) to non-
Baldwin populations by means of three different measures — namely:

· total population; 
· number of agents in the evolving population who have the Good

Phene (GP);
· number of agents in the evolving population who have the Good

Gene (GG) that produced the original Good Phene.

The last measure — the genetic shift towards the Good Gene — is the most
important for establishing that learning can have a significant effect on the genetic
composition of the population.  It turns out that the Baldwin Effect is most pronounced
for phenes whose plasticity is neither too great nor too small.  
    In a later section of this paper, we will consider Good Phenes that confer more or
less benefit to an organism.  For the moment, though, we will hold this benefit constant
and examine the effect of learning versus non-learning on the genetic makeup of the
population.  

Simulation 1: The Baldwin Effect

  In the first experiment, using asexually reproducing agents, we chose a Good
Gene whose naturally corresponding Good Phene decreased the organism’s "energy tax"
on movement.  Any agent born with this particular Good Gene had phenotypic
characteristics that allowed it to move around in its environment more efficiently than
those that did not have it.  We chose a phenotypic plasticity for this Good Phene of ρ of
0.1.  In other words, this phene is neither particularly easy nor particularly difficult to
learn (see Figure 1).

5



Genes, Phenes, and the Baldwin Effect

  

100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

@
»

Population

Population GP Population GG Population

Population

GP Population

GG Population

Generations

P
o
p
u
l
a
t
i
o

n

Figure 3:  The effect of learning on the evolution of the genotype

Recall that the probability that a given agent will learn the Good Phene is
determined by how far the agent is from the Good Gene (Figure 1).  The graph in Figure
3 shows the evolution of a population in which learning of the Good Phene is occurring.
The top line shows the total population.  The middle line indicates the number of agents
in the population who have the successfully learned the Good Phene.  In other words,
these agents possess the Good Phene either by dint of learning it or because they were
born with the Good Gene.  Finally, the lowest line represents the number of agents in the
population who actually possess the Good Gene.  

In this population it is apparent that, by as little as 500 generations, nearly half of
the population has learned the Good Phene.  This causes an overall population increase
compared to an equivalent population in which none of the members have the Good
Phene (Figure 4).  There is a consistent increase in total population directly related to the
benefit the Good Phene confers. 

The number of agents possessing the Good Gene gradually increases but will
always remain significantly below the number of agents possessing the Good Phene
because all that is required for improved survival is the Good Phene — however it was
come by — and not necessarily the Good Gene.  Individuals who did not obtain the Good
Phene genetically and are not able to acquire it through learning will gradually be
eliminated from the population by their fitter GP competitors. 

Eventually virtually all organisms in the population will possess the Good Phene.
At this point, the genotype will cease to evolve significantly.  Darwinian selective
pressure ceases because all of the organisms are now equally fit, at least with respect to
the advantages conferred by the Good Phene.  Nature cares only that the organism has a
Good Phene and is not concerned with where it came from.  In this simulation, by 5,000
generations, nearly all members of the population have acquired the Good Phene, and
approximately 70% possess the Good Gene.  Even after an additional 5,000 generations,
the number of Good Genes in the population had not changed significantly.  Once the
entire population has become a GP-population, then the difference between the total
population and the GG-population is directly proportional to phenotypic plasticity.
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Figure 4:  The same population with no phenotypic learning 
(notice the lack of change of the genotype)

  
Finally, in an identical non-learning population (Figure 4), the number of agents

possessing the Good Gene remains insignificant.  Clearly, the ability to learn the Good
Phene has a significant influence on the evolution of the genotype, thus demonstrating the
Baldwin Effect.  
  
Simulation 2:  When phenotypic plasticity is too high or too low

We have already seen in Figure 4 that, without phenotypic plasticity (i.e., when no
learning is possible), the genotype of the population does not evolve towards the Good
Gene.  As phenotypic plasticity increases, there is a corresponding increase in genotypic
movement towards GG.  But as phenotypic plasticity grows, the number of agents with
the Good Gene actually begins to decrease and, for very high plasticity, there is virtually
no trend at all towards a GG population (Figure 5).   As in  the  first  simulation, once  the
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Figure 5:  The Baldwin Effect ceases for high phenotypic plasticity 
(Note that the GG population remains insignificant)

entire population possesses the Good Phene, the percentage of GG agents in the
population stops increasing.  If phenotypic plasticity is too high, the entire population will
quickly acquire the Good Phene, effectively bringing to an end any further reason for the
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genotypic profile of the population to change.  The topographic plot in Figure 6 shows
how different phenotypic plasticities affect the percentage of agents in the population
with the Good Gene.  From this graph it can been seen that the Baldwin Effect disappears
for high and low phenotypic plasticities.          
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Figure 6: The effects of differing phenotypic plasticities on the evolution of the 
Good Gene in the population (lighter areas indicate higher GG percentages) 

Simulation 3:  The Baldwin Effect and the Quality of the Good Phene

The extent to which the Baldwin Effect is also operative is affected by the
selective advantage conferred by the Good Phene.  If the Good Phene confers little or no
selective advantage, then the question of its acquisition is of little importance.  GP
organisms will not survive better than non-GP organisms and, consequently, there will be
little or no increase of GG organisms in the population.  

On the other hand, if the Good Phene is extremely good, thereby conferring a very
large selective advantage, those individuals who somehow manage to acquire it will have
a much better chance of surviving.  These organisms will almost invariably out-compete
their non-GP rivals and reproduce more successfully (this is especially true in asexual
populations).  Even if phenotypic plasticity is extremely low (or even zero), the progeny
of a single organism that happened to stumble onto the (Very) Good Gene through
random mutation would stand a good chance of going on to dominate the population.  

In Figure 7 below the “benefit factor” of the Good Phene is set very high and
phenotypic plasticity is set very low.  This figure shows how the total number of
individuals with the Good Gene evolves depending on the phenotypic plasticity and
quality of the Good Phene.
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Figure 7
Effects on genotypic evolution of a very Good Phene 

Sexual populations

So far, all of our simulations have used asexual populations.  Menczer & Parisi
[1992] have demonstrated adaptive advantages in sexual over asexual reproduction.  The
advantage of genetic crossover has been pointed out on many occasions by Holland
[1975, 1986], Belew [1990], and others.  In addition, parthenogenic insects such as
aphids and certain species of flies actually use both forms of reproduction, depending on
environmental conditions.  As long as there is abundant food, the organisms reproduce
asexually — which is far faster, thus producing more abundant offspring [Gould, 1977].
As the food supply dwindles, the insects switch to sexual reproduction.  Sexual
reproduction, while possibly not as reproductively efficient in terms of sheer numbers,
ensures broader genetic diversity, which means that the population as a whole will be less
likely to succumb to a single highly detrimental environmental change.
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Figure 8:  A comparison of evolving GG percentages in asexual and sexual populations

We also ran the simulation with sexually reproducing agents.  These sexual
populations ultimately always had higher concentrations of Good Genes than asexual
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ones.  For equivalent total population sizes, the GG-population in the sexually
reproducing population increased considerably faster than the GG-population in a asexual
population of the same size (Figure 8). This result was not entirely unexpected in light of
predictions about the behavior of genetic algorithms [Holland, 1975]. 
                                                                                        
Justification of the learning procedure

In Hinton & Nowlan’s [1987] classic simulation of the Baldwin Effect, the
genotype for each organism in the population consists of a bitstring of twenty 0’s, 1’s and
?’s ("undetermined" alleles).  A “phenotypic copy” (instantiated as the weights of a
network in their model) of this bitstring is made on which “phenotypic learning” is done.
Learning is done by randomly assigning 1’s or 0’s to all of the question marks
approximately 1000 times, each time checking to see if an all-1’s phenotype has been hit
upon.  If the all-1’s phenotype is discovered during the 1000 learning trials, the original
genotype is then assigned a high explicit “fitness” making it much more likely to be
chosen as a parent for mating and crossover in the next time cycle.

Our model differs in certain significant respects from Hinton & Nowlan’s model.
Phenotypic learning, in particular, is done differently in our simulation.  We start from
the assumption that certain Phenes, as we have called them, are harder to learn than
others in general, i.e., for all organisms in the population.  Across the human population,
for example, it is harder to learn perfect pitch than it is to learn to wink.  In our model,
differing degrees of phenotypic plasticity express those differences.   With respect to
learning a particular Phene, say, winking, certain individuals have a considerably harder
time than others.  This is a function of the organism’s genetic hamming distance from the
phene in question.  

In Hinton and Nowlan’s model, phenotypic plasticity is fixed; there is no
mechanism for varying the difficulty of learning according to the Good Phene under
consideration.  There is only one Good Phene and the difficulty of learning it depends
solely on how far an organism’s phenotype is from it.  If there were a second Good
Phene, there seems to be no simple mechanism in their model for making it easier (or
harder) to learn than the first one.

In addition, in Hinton & Nowlan, an explicit function is used to measure the
fitness for reproduction of an individual.  This function is implicit in our simulation,
arising from the interaction of the agents in the world.  While the Good Phene does
confer an efficiency advantage in our model, it does not expressly add to the fitness of the
individual.  In fact, in certain simulations when the reproduction tax was too low, the
agents rapidly overpopulated the world and actually became extinct due to starvation. 

By varying phenotypic plasticity and benefit to the organism we are able to more
completely characterize the Baldwin Effect. 

A final remark

In regards to our strict separation of the ability to learn the Good Phene from the
underlying genetics, the following objection might be raised:  Isn’t any ability to modify
one’s phenotypical characteristics through learning itself determined by the underlying
genotype?  And, if so, doesn’t the exclusion of "learning" genes from the underlying
genotype constitute a sort of legerdemain contrived to allow us to pull the Baldwin Effect
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out of our simulation hat?  In other words, would the Baldwin Effect go away if a big
enough genotype were considered, one that included the genes that coded for motivation,
for learning, for general intelligence, for the amount of fast-twitch muscle fiber, etc?  The
answer is, of course, yes, but a rather hollow yes.  This genetic reductionism, wherein
everything is reduced to the level of genes, is certainly correct but lacking in high-level
explanatory power, rather like describing King John’s signature on the Magna Carta in
terms of molecules of ink on molecules of paper.          
        The fact is that we could have added "learning genes" to our base genotype and the
effects demonstrated in this paper would no doubt have remained unchanged.  This is
because, even though an organism’s ability to learn is, admittedly, derived from its genes
(like everything else), general-purpose learning abilities are assumed to be the product of
a very large, highly robust set of genes.  This set of  "learning genes", while obviously not
identical in each individual of the population, is assumed to be similar across the entire
population and determines how difficult it will be, on average, to learn a particular Phene.
These learning genes determine the shape of the population-wide phenotypic plasticity
curve for any Good Phene.  

In our attempt to better isolate the Baldwin Effect, we elected not to include any
specific set of genes in the base genotypes of the agents that coded for learning.  Isolating
the genes that coded for one specific behavior allowed us to give an improved
characterization of certain important aspects of the Baldwin Effect.  

Conclusion

We have empirically demonstrated a pronounced Baldwin Effect in a simulated
population of naturally evolving agents.  In other words, the ability to learn at the
phenotypic level had a significant effect on the genotypic evolution of the population.  In
addition, certain factors, in particular, the amount of phenotypic plasticity and the benefit
associated with the learned phenotypic behavior or characteristic, have a significant
influence on the amount of genotypic change produced.  It also appears that excessively
high or low levels of phenotypic plasticity have the same effect — namely, they are
significantly less successful at promoting genotypic evolution than moderate levels of
plasticity.  Finally, we have shown more pronounced Baldwin Effect in sexually
reproducing organisms than in otherwise comparable asexually reproducing organisms.   
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Appendix:  Details of the Simulation

Bugs!, the simulation described in this paper was written in Objective C on a NeXT
computer.  The code is available through the Willamette University cognitive science
anonymous ftp.  (ftp to willamette.edu then cd to pub/cogsci and get baldwin.bugs.Z)  

Bugs! is a discrete time simulation of free-acting agents (bugs) in a two-dimensional
matrix arranged to form a torus.  Each cell in the 100x100 matrix contains at most one
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agent.  The world is randomly seeded with agents having randomized genotypes and with
food piles of unifrom size.  At each timestep more food piles are randomly placed in the
world. 

These agents are similar to the "tropic bugs" described in [Packard, 1989].  They
contain an internal food counter which must remain positive in order for the agent to
remain alive.  The agents are taxed for movement, metabolism and reproduction by
decrementing their internal food counter.  All bugs can sense the amount of food in the
four cells immediately surrounding them and to move up this gradient.  At each timestep,
after checking their internal food, all of the agents do the following, in order.

Metabolize: The “existence tax” is subtracted from the internal food count.  
Eat: If the cell they occupy contains food, they eat up to a prespecified amount.  
Reproduce:  A variable is set that determines whether reproduction will be asexual,

sexual, or both.  Reproduction is only permitted only if an agent’s internal food
counter is above a pre-specified reproduction threshold. 

Move:  Agents move in the direction with the greatest amount of food.  If all cells have
the same amount of food, the agent will move in the same direction as last turn.
Agents may move only move one space per time step.

An agent’s genetic code consists of a fixed-length gene whose alleles are either 1’s or
0’s.  As in Hinton & Nowlan [1987], there is a single bit pattern that has been determined
to be better than the others — we call this  pattern the Good Gene.  Any individual with
this gene will benefit from certain advantages phenotypic traits or behaviors — the Good
Phene.  Agents who do not have the Good Phene as a direct result of having the Good
Gene have, nonetheless, a certain probability of learning it, depending on how far their
genotype is from the Good Gene.  The calculation of this probability is performed at the
time of birth.  The genotype of a particular organism does not change over its lifetime.  

Reproduction:
Asexual: After checking that its internal food exceeds the reproduction threshold, the

agent spawns a new agent containing a copy of its own genetic material.  This copy
is subject to mutation, the probability of which is set by a mutation rate parameter
that specifies the probability that a given bit will be copied incorrectly.  A pre-
specified amount of food, corresponding to the reproduction tax, is taken from the
internal food count of the parent and is given to the child.  

Sexual:  In addition to checking its internal food count, the agent checks its 4 space
surround to see if another agent is present to mate with.  If this is the case the agent
“mates” with the new agent and a new agent is “born” with a combination of the
two agents genotypes.  The child’s gene is the produced by crossing over the two
parent genes at a point randomly chosen along the length of the gene.  Because a
small amount of mutation is required to prevent the gene pool from possible
stagnation [Holland, 1975], a mutation parameter is included.  The reproduction tax
is only levied against the current individual and not its mate.  As in asexual
reproduction, the amount of this tax is given to the new agent as internal food.

Learning:  Whether or not a given agent learns an adaptive behavior or trait depends on
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the phenotypic plasticity curve and the agent’s genotypic hamming distance from the so-
called Good Gene.  When a bug is born, its hamming distance from the Good Gene is
calculated and this distance establishes the probability that the bug will phenotypically
learn the Good Phene during its lifetime (Figures 1 and 2).  This probability is used at the
time of birth in a stochastic dermination of whether or not the agent learns the Good
Phene. 

If an agent acquires the Good Phene, either through birth or learning, then one of the
three taxes (i.e., movement, reproduction, or metabolism) is reduced by dividing it by a
factor called the GPBenefit factor.  Currently only the rate of taxation is controlled by this
mechanism, however method of reproduction has been considered as a possible addition.

Initial Settings:  A number of parameters must be set before the simulation will work.
Below is a list of parameter values for all of the simulations in the experimental section
of this paper.

GeneLength: 10,12 StartingPopulation: 100
MetaTax (metabolism tax): 5 MoveTax (movement tax): 15
RepoTax (reproduction tax): 150 RepoThreshold 

(reproduction threshold): 200
StartingInternalFood: 100 Mouthful 
StartingNumberFoodPiles: 30 (max. bitesize per timestep): 100
FoodPileDepth  (food per pile): 20 NumberFoodPilesTurn 

(piles added per timestep): 4
MutationRate: 50
AsexualReproduction: 0-1 (Off/On) SexualReproduction: 0-1 (Off/On)
SexualMutation 

(sex. reprod. mutation rate): 0 (Off) 
GP Plasticity (phen. plasticity): 0-10
GPBenefit (amount of tax decrease): 2,15
GPType (type of Good Phene): 1,2, or 3 (Move. tax reduction)
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