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Abstract

This paper draws on previous research that strongly suggests
that bilingual memory is organized as a single distributed
lexicon rather than as two separately accessible lexicons
corresponding to each language.  Interactive-activation
models provide an effective means of modeling many of the
cross-language priming and interference effects that have
been observed.  However, one difficulty with these models is
that they do not provide a plausible way of actually acquiring
such an organization.  This paper shows that a simple
recurrent connectionist network (SRN) (Elman, 1990) might
provide an insight into this problem.  An SRN is first trained
on two micro-languages and the hidden-unit representations
corresponding to those languages are studied. A cluster
analysis of these highly distributed, overlapping
representations shows that they accurately reflect the overall
separation of the two languages, as well as the word
categories in each language.  In addition, random and
extensive lesioning of the SRN hidden layer is shown, in
general, to have little effect on this organization.  This is in
general agreement with the observation that most bilinguals
who suffer brain damage do not lose their ability to
distinguish their two languages.  On the other hand, an
example is given where the removal of a single node does
radically disrupts this internal representational organization,
similar to rare clinical cases of bilingual language mixing and
bilingual aphasia following brain trauma.  The issue of
scaling-up is also discussed briefly.

Introduction
One of the central questions in the field of bilingual memory
involves the lexical organization of bilinguals’ two
languages within the brain. Are these languages organized
in a highly independent, selectively accessed manner or
rather in a highly overlapping, distributed manner, much
like monolingual memory with twice as many words?  In
short, are there two lexicons or one?

Research throughout the past decade has left little doubt
that, at least functionally, there is a great deal of interaction
between the two lexicons.  Numerous experiments have
consistently shown evidence of inter-language priming and
interference, even when bilingual participants are carefully
put into strictly monolingual contexts.  Even a partial list of
the work on cross-lingual priming and interference is
extensive and would include: Kolers (1966), Meyer &
Ruddy (1974); Schwanenflugel & Rey (1986); Beauvillain
& Grainger (1987), Grainger & Beauvillain (1988); Chen &
Leung (1989), De Groot & Nas (1991), Beauvillain (1992),
Keatly & de Gelder (1992), Grainger & O’Regan (1992),
Keatley, Spinks, & De Gelder (1994),  French & Ohnesorge,

(1996, 1997), Fox (1996), and so on. Further, interlingual
Stroop tests have also shown clear evidence of considerable
cross-language interference (Dyer, 1971; Preston &
Lambert, 1969; Mägiste, 1984).

In this paper, therefore, I will take for granted that these
inter-language priming and interference effects are real and
that some form of interactive-activation model (McClelland
& Rumelhart, 1981) can provide a reasonable explanation
for them.  However, interactive-activation models of
memory are localist connectionist networks that, in general,
are not designed to learn. This is the case, in particular, for
Grainger’s (1993) Bilingual Interactive Activation model
This paper explores the question of what type of distributed
connectionist architecture, capable of learning, might be
able to produce some of the effects whose explanation
currently requires an interactive-activation framework.  I
will suggest that a simple recurrent connectionist network
(SRN) — frequently referred to as an Elman network
(Elman, 1990) — is an appropriate non-localist
connectionist framework in which to study bilingual
memory.  This SRN network exhibits:

• progressive development of hidden-unit representations
that cluster according to grammatical forms (subject,
verb, object) and languages, even though there are no
explicit markers on input distinguishing the languages
or their grammatical forms;

• inter-lingual interference effects;
• considerable resistance to lesioning;
• significant disruption of internal organization that can

be produced, on rare occasions, by lesioning a very
small number of nodes.

Related work has been done by Cleeremans (1993) in his
connectionist simulations of implicit learning of Reber
grammars (Reber, 1967).  In addition, there is currently at
least one other non-localist connectionist model of bilingual
memory.  This is a model developed by Thomas & Plunkett
(1995) and Thomas (1997).  However, the latter model is
not recurrent and therefore cannot be used to study the
sequential acquisition of language.  Kawamoto (1993)
proposed a recurrent connectionist network to study word
disambiguation.  This model could almost certainly also be
adapted to the case of bilingual memory.

Simulation Environment
The two micro-languages that were used were called Alpha
and Beta.  Each language consisted of 12 items: subject
nouns, verbs and object nouns.  These were broken down as
follows:



Alpha
Subject Nouns:  BOY, GIRL, MAN, WOMAN
Verbs:   LIFTS, TOUCHES, SEES, PUSHES
Object Nouns: TOY, BALL, BOOK, PEN

Beta
Subject Nouns:  GARÇON, FILLE, HOMME, FEMME
Verbs:   SOULEVE, TOUCHE, VOIT, POUSSE
Object Nouns: JOUET, BALLON, LIVRE, STYLO

It is important to remember that the words “BOY”,
“FILLE”, “VOIT”, “PUSHES”, etc. carry no semantic
information.  For the purposes of this simulation, I could
just as easily have chosen single letters, or any other
arbitrary symbols.  The reason I chose these particular
words was so that they, and the sentences produced by
them, would be immediately identifiable as belonging to one
language or another.  Thus, we know BOY TOUCHES
BOOK is from Alpha, whereas FILLE SOULEVE STYLO
is from Beta.

Sentences in each language have the following simple
SVO grammatical structure: NOUNSUBJECT – VERB –
NOUNOBJECT.  A “language generator” (a finite-state
machine) generates sequences of legal sentences in both
languages (Figure 1).  It is designed to simulate an Alpha-
Beta bilingual environment.  It has a fixed probability of
0.001 of switching from one language to another. This
probability does not change during the course of a single
run.  In other words, if the switching probability is 0.001 at
the beginning of the run, it will be the same 10,000
sentences later. Language switching was only permitted at
the end of a sentence.  (This constraint was relaxed in other
experiments and the clusters of hidden-layer representations
for both languages remained essentially the same as in the
case where language-switching was only permitted at the
end of sentences.)

BOY LIFTS TOY MAN SEES PEN MAN TOUCHES
BOOK GIRL PUSHES BALL WOMAN TOUCHES TOY
BOY PUSHES BOOK FEMME SOULEVE STYLO FILLE
PREND STYLO GARÇON TOUCHE LIVRE FEMME
POUSSE BALLON FILLE SOULEVE JOUET WOMAN
PUSHES PEN BOY LIFTS BALL WOMAN TAKES
BOOK...

No explicit markers between languages (or between
individual sentences).

Figure 1.  A typical Alpha-Beta language stream
generated by the language generator.  This stream of
input will be fed to the SRN.  Notice that, as in real
(spoken) language, there are no explicit markers either
between sentences or between languages.

Methodology
Each word in the sequence was presented to a 24-32-24
Elman network with a bias node.  The learning rate was set

at 0.1, momentum at 0.9, with a sigmoid squashing function
and using a Fahlman offset of 0.1 (Fahlman, 1989). Input to
the network consisted of individual words from a long string
of sentences (Figure 1) generated automatically by a finite-
state machine.  For each word in the sequence, the
network’s task was to predict the following word.  For
example, in the sequence shown in Figure 1, the network
would first get BOY on input and try to predict LIFTS on
output, then LIFTS on input, trying to predict TOY on
output, and so on.

Unlike standard sequence learning, the network never
returns to the beginning of the sequence.  A single weight
change is made per input word (i.e., it learns for one epoch
per presentation).  The network has no hope of actually
memorizing the two-language sequence because the
sequence, as in real language, is non-deterministic. The
expedient of localist input coding was used for the twenty-
four words comprising the combined Alpha and Beta
vocabularies.  This coding was done as follows:

 BOY  = 100000000000000000000000,
GIRL = 010000000000000000000000,
MAN  = 001000000000000000000000 , etc

The Emergence of Language-Specific Clusters
of Internal Representations

In this simulation we allowed training to continue until
300,000 items (100,000 sentences) had been seen.  At
various points in the run, the hidden-layer activation
patterns were collected for each of the 24 words in the
Alpha and Beta and were subjected to agglomerative
hierarchical cluster analysis using a Euclidean distance
metric and Ward’s method to determine linkage.

Figure 2 shows the SRN’s hidden-layer representations
of Alpha and Beta.  It can be seen that these representations
are highly distributed and overlapping, but they are also
clustered (Figure 3).  After exposure to 60,000 items
(Figure 3), stable clusters have developed that correspond
not only to grammatical structures (Subject nouns, Verbs,
and Object nouns), but also to each of the two languages.
Alpha words lie in a distinct cluster from Beta words.  It is
in this sense that we can talk of language separation.  In
addition, this clustering has occurred in the absence of any
explicit language (or sentence) “marking.”
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Figure 2:  The highly distributed overlapping
representations of Alpha and Beta at the hidden layer
after exposure to 20,000 sentences (60,000 items).
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Figure 3.  After 20,000 sentences (60,000 items)
clusters have formed not only for the parts of speech in
each language, but also for each language.  The
network has separated the two languages into distinct
clusters of hidden-unit representations.

The Stability of the Language Clusters to
Disruption by Lesioning of the Hidden Layer

In general, brain trauma in bilinguals does not result in the
loss of one language or even extensive language-mixing.
Connectionist networks modeling bilingual memory
organization should also be able to display this ability of
resistance to damage.  In general, the ability to function
when damaged is one of the most significant advantages of
distributed connectionist systems.  In the case of the present
SRN model, once it had learned Alpha and Beta, it was very
hard to disrupt the organization of the clusters it had
developed.  Following learning, nodes were removed from
the hidden-layer and a cluster analysis performed on the
activation patterns of the remaining nodes.  In some cases,
up to 30 nodes (out of 32) were removed and the
organization of the representational clusters remained
essentially unchanged.

  HOMME:
  FEMME:

  FILLE:
 GARCON:

   BOOK:
    PEN:
   BALL:
    TOY:

 PUSHES:
  TAKES:
   SEES:
  LIFTS:
   VOIT:

  PREND:
 POUSSE:
SOULEVE:

  LIVRE:
  STYLO:

 BALLON:
  JOUET:

  WOMAN:
    MAN:
   GIRL:
    BOY:

Figure 4.  The separate Alpha-Beta language clusters
are completely disrupted following the removal of
Node 22.

On the other hand, in certain cases of brain trauma,
fortunately quite rare, bilinguals can lose one of their

languages or become incapable of distinguishing their two
languages (Albert & Obler, 1977; Paradis, 1977; etc.).  In
the SRN model presented here, while this type of disruption
is rare, it has been observed.  The case presented in this
paper (Figure 4) was provoked by the removal of a single
node (Node 22) from the hidden layer after learning.  If we
refer to Figure 2, we notice a very large difference in the
average activation of Node 22 for words in Beta compared
to words in Alpha.  It turns out that if this node (or any
combination of nodes including this crucial node) is
removed, the Alpha and Beta clusters disintegrate.  Figure 4
shows the powerful effect on the language clusters of the
removal of this node.

Discussion
It can be seen in Figure 2 that the representations for both
languages are highly distributed and overlapping but what
allows the network to distinguish Alpha from Beta is,
ultimately, differences in the overall activation patterns for
each language.  In this case, it turns out that Node 22
accounts for 27% of this difference, compared to an average
contribution of the other nodes of only about 3%.  It is for
this reason that its removal has such a significant effect on
the overall organization of language clusters.
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Figure 5.  The activation difference between Alpha and
Beta measured as the difference in the overall activation
of all words in both languages.

-0.4

-0.2

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

activation difference

node

Figure 6.  In general, the differences between the two
sets of average representations for the words in each
language are distributed over many nodes.  Each node
only accounts for a small fraction of the total difference
and its loss would therefore be much less significant
than the loss of Node 22 in Figure 5.

In most cases, the pattern of differences is much more
evenly distributed over the entire hidden-layer.  For



example, the distribution of differences shown in Figure 6
(from another run of the program), is far more typical.  In
the latter case the loss of a single node is not enough to
seriously disrupt the overall difference between the two sets
of representations.

The Decrease of Homographic Priming
French & Ohnesorge (1997) reported a disappearance of
homographic priming for bilinguals in a mixed French-
English condition compared to an All-English condition.
They looked at a series of interlexical homographs —words
that have distinct meanings in two separate languages; for
example, words like, FIN (which means “end” in French),
“PAIN” (= “bread” in French, etc.) — and paired them with
words that they strongly primed in English.  So, for
example, the homograph FIN was paired with the target
word SHARK, since in a word-nonword recognition task
SHARK will be recognized to be a word much faster when
it has been immediately preceded by FIN; we say that FIN
primes SHARK.  The homograph PAIN was paired with the
target word HURT, and so on.  The participants’ task was to
say  whether the target  word  was  a  word  in English.   The
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Figure 7.  The substantial priming effect of SHARK by
FIN in the All English condition is significantly
reduced in the Mixed Condition.

amount of priming of the target words was compared in two
conditions: an All-English condition and a Mixed condition
(where the participants saw a mixture of half English and
half French items).  In the All-English condition, there was
significant priming of the set of target words by the
interlexical homographs.  However, when French words
were included in the Mixed condition (the task, identifying
the item as a word in English, remained the same), the
amount of priming was greatly reduced.  The results in
Figure 7 (French & Ohnesorge, 1997) show a priming effect
of 62 ms in the All-English condition but very little effect
(12 ms) in the Mixed condition.

“Spreading activation” in an SRN framework
Overlapping patterns of activation at the hidden layer can

give rise to the perception of activation “spreading”
throughout a language in an interactive-activation model.
In other words, if the hidden-unit representation for BOY is
active and the hidden-unit representation for GIRL is close
by (i.e., the two representations have highly shared patterns
of activation), this means that a very small change in the
weights of the network can transform its internal
representation of BOY into its representation for GIRL.  On
the other hand, the transformation from BOY to, say,
SOULEVE, will be considerably more difficult since the
respective representations of BOY and SOULEVE are
considerably farther apart than BOY and GIRL, thereby
requiring, on average, greater weight changes to transform
one into the other.  Clusters of representations are, by
definition, activation patterns that are close together.  It is
therefore reasonable to suppose that if the hidden-layer
activation clusters for each language are clearly separated
(as in Figure 3), activation will “spread” within a language
before it “spreads” to the other language,

Simulating the Decrease of Homographic
Priming in the SRN Model

Based on this notion of spreading activation, we will say
that in our SRN model, the amount of “priming” of a target
word by a prime word will be determined by the how far the
output of the network is from the target word after the prime
word has been presented to it on input.  So, for example,
when a prime word Wp is presented to the network, an
output vector Xp will be produced. This vector will be a
certain Euclidean distance di from each word, Wi, known to
the network.  The word Wi that is best primed by Wp is the
one for which di is the smallest.  In the simulation described
below, we trained the network on 10,000 sentences and then
ran the priming tests.

For the following simulation, we first created an Alpha-
Beta interlexical homograph similar to the French-English
homograph, FIN.  GARÇON and BOY were replaced by a
single made-up word which, for no particular reason, I
called TRAT.  (Keep in mind that the “words” in Alpha and
Beta have no semantic content.  Their resemblance to
French and English words serves only to identify the
language they come from. Lexically speaking, TRAT could
have come from both.)  Recall that the French-English
homograph FIN is a low-frequency word in English that
strongly primes SHARK, and a high-frequency word in
French.  TRAT was designed to simulate this type of
homograph.  This was done as follows:  95% of the time
that TRAT appeared in an Alpha sentence, it was followed
by LIFTS.  As a result, TRAT strongly primed LIFTS,
according to the definition of priming given above. On the
other hand, when the program was being given Beta
sentences, TRAT was made to occur more frequently than
other Beta subject nouns: When a Beta subject noun was
needed, TRAT was selected 40% of the time instead of the
usual 25%.

The network was first tested in an “All-Alpha
condition.”  The All-Alpha context was created by giving



the network 10 Alpha words: five randomly chosen pairs
made up of an Alpha input word and a legal Alpha
successor to that word.  The Mixed context was created by
giving the network 10 Alpha or Beta words consisting of 5
randomly chosen legal pairs of either Alpha or Beta words.
Learning remained on.  Data was gathered over 100
independent runs of the program.

Using the definition of priming given above, it can be
seen that in the SRN model priming of the word LIFTS by
TRAT is significantly decreased in the Mixed condition
(Figure 8).  The Y-axis shows the Euclidean distance
between the network’s actual output and the target word.
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Figure 8. Priming of LIFTS by TRAT is significantly
reduced in the Mixed Condition.  The Y-axis represents
the Euclidean distance between the output of the
network after the prime word (either an unrelated Alpha
word or TRAT) is presented and the word LIFTS.  The
X-axis shows the type of prime word. Compare with
Figure 7.

Means for the English-Unrelated and Homograph-Related
conditions were calculated for each run of the program and
submitted to a mixed ANOVA.   The interaction of
Context(All-Alpha, Mixed) X Prime-Relatedness(Alpha-
Unrelated, Homograph-Related) was significant, F(1,183)=
4.4, p<0.05.  The priming effect in the All-Alpha condition
was 0.85, compared to 0.49 in the Mixed condition.

In other words, using a canonical definition of priming
as a measure of the proximity of the output of the network
to the target, the SRN model exhibits a loss of priming
comparable to that observed in real bilinguals.

Can the SRN Model Scale Up?
Real languages obviously contain more than 12 words and
have a far more complex grammatical structure than either
Alpha or Beta.  Consequently, it is necessary to say a few
words about the problem of scaling up.

The present model has been tested on as many as 1536
words (256 words per category) with the same simple SVO
grammar.  For the simulations involving 1536 words, the six
categories of words were coded with 8 bits per word
category, as follows:

Alpha_noun1=   0000000000.....0,
Alpha_noun2=   0000000100.....0;
Alpha_noun3=   0000001000.....0;
...      8-nodes
Alpha_noun256= 11111111000....0;
etc.
The network had 48 input and 48 output units and 100
hidden units.  After exposure during learning to 30,000
sentences (90,000 items), the pattern of hidden-unit clusters
shown in Figure 9 developed (calculated from a random
sample of 100 words).

    B593    B624    B609    B549    B674    B544    B565    B597    B649    B700    B665    B659    B749    B717    B667    B607    B603    B539    B584    B526    B498    B459    B507    B381    B418    B356    B324    B158     B89    B235    B231    B221    B203    B121     B51    B102    B170     B46     B84     B76     B42     B40     B21     B24     B12      B4XXXXX445XXXXX503XXXXX479XXXXX463XXXXX298XXXXX357XXXXX468XXXXX282XXXXX270XXXXX727XXXXX607XXXXX416XXXXX762XXXXX686XXXXX713XXXXX566XXXXX653XXXXX663XXXXX723XXXXX725XXXXX574XXXXX558XXXXX603XXXXX587XXXXX539XXXXX665XXXXX644XXXXX608XXXXX704XXXXX656XXXXX352XXXXX255XXXXX249XXXXX194 XXXXX66XXXXX233 XXXXX41XXXXX218XXXXX139 XXXXX60 XXXXX47XXXXX115XXXXX242XXXXX205XXXXX179XXXXX149XXXXX180  XXXXX6  XXXXX4  XXXXX1
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Figure 9.  Hidden-unit representation clusters for 1536
Alpha and Beta words after 90,000 items (Alpha words are
preceded by a series of X’s to distinguish them from Beta
words, which are preceded by a single “b”)

The overall internal organization of the hidden-unit
representations is basically the same as it was for the much
smaller set of 24 words.  Although a great deal more work
needs to be done on this model, this result for over 1500
words would seem to indicate that there is at least some
reasonable hope that the SRN model could scale up.

Conclusion
This paper suggests that bilingual memory phenomena that
have been explained by an interactive-activation model of
the BIA type (Grainger, 1993) may also be able to emerge
from a simple recurrent connectionist network (SRN) model
(Elman, 1990; Cleeremans & McClelland, 1991;
Cleeremans, 1993).  The SRN model presented here
receives as input a long, undifferentiated sequence of
sentences in two micro-languages and can reproduce a
certain number of important effects that have been observed
in studies of bilingual memory, in particular, those related to
cross-lingual priming by interlexical homographs.  In
addition, the internal representations that the SRN develops
reflect not only the divisions between the two languages, but
also to the grammatical structure within each language.  The
organization of these internal representations is generally
highly resistant to damage but, under certain exceptional
circumstances, can also exhibit severe disruption following
the removal of a as little as one node from the hidden layer.

Even though this initial work would seem to demonstrate
that an Elman network might be able to serve as a useful



model for bilingual memory, it is also clear that a great deal
of work still needs to be done.  However, these initial
positive results would suggest that further exploration of the
SRN model of bilingual memory is justified.
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