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Abstract (1996, 1997), Fox (1996), and so on. Further, interlingual
Stroop tests have also shown clear evidence of considerable
This paper draws on previous research that strongly suggests cross-language interference (Dyer, 1971; Preston &
that bilingual memory is organized as a single distributed [ ambert, 1969; Magiste, 1984).
lexicon rather than as two separately accessible lexicons  |n this paper, therefore, | will take for granted that these
‘;?é;zslgor;gilri‘ge E;n :f?ect?tivlearr]r?::r??of m'g;zrl?rft"’ne];d“é?tlﬁg inter-language priming and interference effects are real and
cross-lar?guage oriming and interference effegcts thét have that some form of interactive-activation model (McClelland
been observed. However, one difficulty with these models is & Rumelhart, 1981) can ,prOV'de a rea}sor_lable explanation
that they do not provide a plausible way of actuatiguiring for them.  However, interactive-activation models of
such an organization. This paper shows that a simple memory are localist connectionist networks that, in general,
recurrent connectionist network (SRN) (Elman, 1990) might are not designed to learn. This is the case, in particular, for
provide an insight into this problem. An SRN is first trained  Grainger's (1993) Bilingual Interactive Activation model
on two micro-languages and the hidden-unit representations This paper explores the question of what type of distributed
corresponding to those languages are studied. A cluster connectionist architecture, capable of learning, might be
analysis of these highly distributed, overlapping apje to produce some of the effects whose explanation
representations shows that they accurately reflect the overall currently requires an interactive-activation framework. |

separation of the two languages, as well as the word . . L
categories in each language. In addition, random and will suggest that a simple recurrent connectionist network

extensive lesioning of the SRN hidden layer is shown, in (SRN) — frequently referred to as an Elman network
general, to have little effect on this organization. Thisisin (Elman, 1990) — is an appropriate non-localist
general agreement with the observation that most bilinguals connectionist framework in which to study bilingual
who suffer brain damage do not lose their ability to memory. This SRN network exhibits:
distinguish their two languages. On the other hand, an  « progressive development of hidden-unit representations
example is given where the removal afsingle nodedoes that cluster according to grammatical forms (subject,
re.ldl.cally dlsrupt§ .thIS internal rgpresentatlonal organization, verb, object) and languages, even though there are no
similar to rare clinical cases of bilingual language mixing and explicit markers on input distinguishing the languages
bilingual aphasia following brain trauma. The issue of . . )
scaling-up is also discussed briefly. or the.|r gram_matlcal forms;
« inter-lingual interference effects;
Introduction . cpns_,iQerabIe_ resis_tance t_o lesioning; o
« significant disruption of internal organization that can

One of the central queStiOHS in the field of b|l|ngua| memory be produced, on rare occasions' by |esi0ning a very
involves the lexical organization of bilinguals’ two small number of nodes.
languages within the brain. Are these languages organizggblated work has been done by Cleeremans (1993) in his
in a highly independent, selectively accessed manner @pnnectionist simulations of implicit learning of Reber
rather in a highly overlapping, distributed manner, muctyrammars (Reber, 1967). In addition, there is currently at
like monolingual memory with twice as many words? Injeast one other non-localist connectionist model of bilingual
short, are there two lexicons or one? memory. This is a model developed by Thomas & Plunkett

Research throughout the past decade has left little doup1995) and Thomas (1997). However, the latter model is
that, at least fUnCtiona”y, there is a great deal of interactionot recurrent and therefore cannot be used to Study the
between the two lexicons. Numerous experiments haV@equential acquisition of language. Kawamoto (1993)
consistently shown evidence of inter-language priming angroposed a recurrent connectionist network to study word
interference, even when bilingual participants are carefullgisambiguation. This model could almost certainly also be

put into strictly monolingual contexts. Even a partial list ofagapted to the case of bilingual memory.
the work on cross-lingual priming and interference is
extensive and would include: Kolers (1966), Meyer & ; i ;
Ruddy (1974); Schwanenflugel & Rey (1986); Beauvillain ) Simulation Environment

& Grainger (1987), Grainger & Beauvillain (1988); Chen & The two micro-languages that were used were called Alpha
Leung (1989), De Groot & Nas (1991), Beauvillain (1992),and Beta. Each Ianguage consisted of 12 items: subject
Keatly & de Gelder (1992), Grainger & O’Regan (1992),houns, verbs and object nouns. These were broken down as
Keatley, Spinks, & De Gelder (1994), French & Ohnesorgefollows:



at 0.1, momentum at 0.9, with a sigmoid squashing function
and using a Fahlman offset of 0.1 (Fahlman, 1989). Input to
the network consisted of individual words from a long string
of sentences (Figure 1) generated automatically by a finite-
state machine. For each word in the sequence, the
network’s task was to predict the following word. For
example, in the sequence shown in Figure 1, the network
would first get BOY on input and try to predict LIFTS on
output, then LIFTS on input, trying to predict TOY on
output, and so on.

Unlike standard sequence learning, the network never

Alpha
Subject Nouns: BOY, GIRL, MAN, WOMAN

Verbs: LIFTS, TOUCHES, SEES, PUSHES
Object Nouns: TOY, BALL, BOOK, PEN

Beta
Subject Nouns: GARCON, FILLE, HOMME, FEMME
Verbs: SOULEVE, TOUCHE, VOIT, POUSSE
Object Nouns: JOUET, BALLON, LIVRE, STYLO

It is important to remember that the words “BOY”,
“FILLE”, “VOIT", “PUSHES", etc. carry no semantic returns to the beginning of the sequence. A single weight
information. For the purposes of this simulation, | couldchange is made per input word (i.e., it learns for one epoch
just as easily have chosen single letters, or any othgrer presentation). The network has no hope of actually
arbitrary symbols. The reason | chose these particulanemorizing the two-language sequence because the
words was so that they, and the sentences produced ®gquence, as in real language, is non-deterministic. The
them, would be immediately identifiable as belonging to onexpedient of localist input coding was used for the twenty-

language or another. Thus, we know BOY TOUCHESour words comprising the combined Alpha and Beta

BOOK is from Alpha, whereas FILLE SOULEVE STYLO vocabularies. This coding was done as follows:

is from Beta. N BOY = 100000000000000000000000,
Sentences in each Ianguage have the foIIowmg S|mple GIRL = 010000000000000000000000,

SVO grammatical structure: NOWDdkject — VERB — MAN = 001000000000000000000000
NOUNggect: A ‘“language generator” (a finite-state

machine) generates sequences of legal sentences in b _ s
languages (Figure 1). It is designed to simulate an Alphz;}jlrh € Eme(r)g?elrr]]tceem(;fl Iﬁ:&ii%i;ﬁgﬁglc Clusters

Beta bilingual environment. It has a fixed probability of
0.001 of switching from one language to another. Thisn this simulation we allowed training to continue until
probability does not change during the course of a singl@00,000 items (100,000 sentences) had been seen. At
run. In other words, if the switching probability is 0.001 atvarious points in the run, the hidden-layer activation
the beginning of the run, it will be the same 10,000patterns were collected for each of the 24 words in the
sentences later. Language switching was only permitted Alpha and Beta and were subjected to agglomerative
the end of a sentence. (This constraint was relaxed in othleierarchical cluster analysis using a Euclidean distance
experiments and the clusters of hidden-layer representationgetric and Ward’s method to determine linkage.

for both languages remained essentially the same as in the Figure 2 shows the SRN'’s hidden-layer representations
case where language-switching was only permitted at thef Alpha and Beta. It can be seen that these representations
end of sentences.) are highly distributed and overlapping, but they are also
clustered (Figure 3). After exposure to 60,000 items

etc

BOY LIFTS TOY MAN SEES PEN MAN TOUCHEES (Figure 3), stable clusters have developed that correspond
BOOK GIRL PUSHES BALL WOMAN TOUCHES TOY not only to grammatical structures (Subject nouns, Verbs,
BOY PUSHES BOQK FEMME SOULEVE STYLO FILLE and Object nouns), but also to each of the two languages.
PREND STYLO GARCON TOUCHE LIVRE FEMME Alpha words lie in a distinct cluster from Beta words. It is

POUSSE BALL FILLE SOULEVE JOUET WOMAN in this sense that we can talk of language separation. In
PUSHES PEN/BOY LIFTS B OMAN TAKE$ addition, this clustering has occurred in the absence of any

BOOK...

No explicit markers between
individual sentences).

languages (or

Figure 1. A typical Alpha-Beta language stream
generated by the language generator.
input will be fed to the SRN. Notice that, as in real

(spoken) language, there are no explicit markers either

between sentences or between languages.

Methodology

This stream of

explicit language (or sentence) “marking.”
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Figure 2: The highly distributed overlapping

Each word in the sequence was presented to a 24-32-24/€presentations of Alpha and Beta at the hidden layer
Elman network with a bias node. The learning rate was setafter exposure to 20,000 sentences (60,000 items).



glgﬁggh languages or become incapable of distinguishing their two

womaN | Albh languages (Albert & Obler, 1977; Paradis, 1977; etc.). In
e @ pha the SRN model presented here, while this type of disruption
PUSHES is rare, it has been observed. The case presented in this
Bziﬁgg % paper (Figure 4) was provoked Hye removal of a single
B node(Node 22) from the hidden layer after learning. If we
c(ILLE: — refer to Figure 2, we notice a very large difference in the
HOMVE: |——— Beta average activation of Node 22 for words in Beta compared

SOULEVE:
POLSSE: 57 to words in Alpha. It turns out that if this node (or any
VOIT:

JOUET: combination of nodes including this crucial node) is
s é”i removed, the Alpha and Beta clusters disintegrate. Figure 4
' shows the powerful effect on the language clusters of the

removal of this node.
Figure 3. After 20,000 sentences (60,000 items)

clusters have formed not only for the parts of speech in Discussion
each language, but alsfor each language The
network has separated the two languages into distinc
clusters of hidden-unit representations.

¢ It can be seen in Figure 2 that the representations for both
languages are highly distributed and overlapping but what
allows the network to distinguish Alpha from Beta is,

o ultimately, differencesin the overall activation patterns for
The Stability of the Language Clusters to each language. In this case, it turns out that Node 22

Disruption by Lesioning of the Hidden Layer  accounts for 27% of this difference, compared to an average

In general, brain trauma in bilinguals does not result in theontribution of the other nodes of only about 3%. It is for
loss of one language or even extensive language-mixinthis reason that its removal has such a significant effect on
Connectionist networks modeling bilingual memorythe overall organization of language clusters.

organization should also be able to display this ability of -

resistance to damage. In general, the ability to functiors; " e

when damaged is one of the most significant advantages Gf

distributed connectionist systems. In the case of the presefit

SRN model, once it had learned Alpha and Beta, it was very:

hard to disrupt the organization of the clusters it hados HHH N H o MHH
developed' FOHOWing Iearning' nOdes were removed fromo ‘;‘2‘;4‘5 6‘:‘8‘9‘10‘]:‘12‘13‘14‘15‘]:317 :8‘1920 21‘2;23‘242526‘27‘2829‘3031 32
the hidden-layer and a cluster analysis performed on the node

activation patterns of the remaining nodes. In some cases,

up to 30 nodes (out of 32) were removed and the Figure 5. The activation difference between Alpha and
organization of the representational clusters remained Beta measured as the difference in the overall activation
essentially unchanged. of all words in both languages.
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Figure 6. In general, the differences between the two
sets of average representations for the words in each
Figure 4. The separate Alpha-Beta language clusters language are distributed over many nodes. Each node
are completely disrupted following the removal of only accounts for a small fraction of the total difference
Node 22. and its loss would therefore be much less significant
than the loss of Node 22 in Figure 5.
On the other hand, in certain cases of brain trauma,

fortunately quite rare, bilinguals can lose one of their [N most cases, the pattern of differences is much more
evenly distributed over the entire hidden-layer. For




example, the distribution of differences shown in Figure &ive rise to the perception of activation “spreading”
(from another run of the program), is far more typical. Inthroughout a language in an interactive-activation model.
the latter case the loss of a single node is not enough bo other words, if the hidden-unit representation for BOY is
seriously disrupt the overall difference between the two setsctive and the hidden-unit representation for GIRL is close

of representations. by (i.e., the two representations have highly shared patterns
of activation), this means that a very small change in the
The Decrease of Homographic Priming weights of the network can transform its internal

: representation of BOY into its representation for GIRL. On
French & the;qrge (1997.). reporte_d a d|§appearance t(ﬁe other hand, the transformation from BOY to, say,
homographic priming for bilinguals in a mixed FrenCh'SOULEVE will be considerably more difficult since the
English condition compared to an All-English condition. S . y

respective representations of BOY and SOULEVE are

They looked at a series of interlexical homographs —words

that have distinct meanings in two separate languages; fgtr)n&derably farther apart than BOY and GIRL, thereby

example, words like, FIN (which means “end” in French),(rﬁ:lwir;]ntg’ tc;‘r; a(;/t(ra]rearge, g{fsattgrrswgf'gpé ?2223; sti;?]strzr;:forbm
“PAIN” (= “bread” in French, etc.) — and paired them with ‘ P » Y

words that they strongly primed in English. So, fordeflnltlon, activation patterns that are close together. It is

example, the homograph FIN was paired with the targ etperefore reasonable to suppose that if the hidden-layer

word SHARK, since in a word-nonword recognition taskac’[ivation clusters for each language are clearly separated
SHARK will be recognized to be a word much faster whe
it has been immediately preceded by FIN; we say that FI
primesSHARK. The homograph PAIN was paired with the . . .

target word HURT, and so on. The participants’ task was to Simulating the Decrease of Homographic

(as in Figure 3), activation will “spread” within a language
rhefore it “spreads” to the other language,

say whether the target word was a wardEnglish The Priming in the SRN Model
Based on this notion of spreading activation, we will say
RT (ms)m —e— All-English that in our SRN model, the amount of “priming” of a target
i —— Mixed word by a prime word will be determined by the how far the

output of the network is from the target word after the prime

7001 '\- word has been presented to it on input. So, for example,

675, when a prime word \Wis presented to the network, an
output vector X will be produced. This vector will be a

650 certain Euclidean distanceftbm each word, Wknown to
the network. The word What is best primed by Ws the

625 one for which dis the smallest. In the simulation described

below, we trained the network on 10,000 sentences and then
ran the priming tests.

For the following simulation, we first created an Alpha-
Beta interlexical homograph similar to the French-English
homograph, FIN. GARCON and BOY were replaced by a
Figure 7. The substantial priming effect of SHARK by Single made-up word which, for no particiu'lar reason, |
FIN in the All English condition is significantly called TRAT. (Keep in mlnd that the WOI’.dS in Alpha and
reduced in the Mixed Condition. Beta have no semantic content. Their resemblance to
French and English words serves only to identify the

amount of priming of the target words was compared in twAnguage they come from. Lexically speaking, TRAT could
conditions: an All-English condition and a Mixed condition N@ve come from both.) Recall that the French-English
(where the participants saw a mixture of half English angiomograph FIN is a low-frequency word in English that
half French items). In the All-English condition, there wasStrongly primes SHARK, and a high-frequency word in
significant priming of the set of target words by theFrench. TRAT was designed to simulate this type of
interlexical homographs. However, when French word§omograph. This was done as follows: 95% of the time
were included in the Mixed condition (the task, identifyingthat TRAT appeared in an Alpha sentence, it was followed
the item as a word in English, remained the same), th®y LIFTS. ~As a result, TRAT strongly primed LIFTS,

amount of priming was greatly reduced. The results igiccording to the definition of priming given above. On the

Figure 7 (French & Ohnesorge, 1997) show a priming effe@@ther hand, when the program was being given Beta
of 62 ms in the All-English condition but very little effect sentences, TRAT was made to occur more fr.equently than
(12 ms) in the Mixed condition. other Beta subject nouns: When a Beta subject houn was
needed, TRAT was selected 40% of the time instead of the

“ : PRTR usual 25%.
Spreading activation” in an SRN framework The network was first tested in an “All-Alpha

Overlapping patterns of activation at the hidden layer cagondition.” The All-Alpha context was created by giving

600 !
Unrelated Related

English Homograph
Prime type



the network 10 Alpha words: five randomly chosen pai;sﬁ:pna_noun? 8888888288 ..... 8
made up of an Alpha input word and a legal Alpha/}Pha_nouns=HHULVVIULUL. ...
successor to that word. The Mixed context was created gyPha_noun3= 000 OOlOOO....é?ﬁodes
giving the network 10 Alpha or B'eta words consisting of 5Alpha_noun256: 11111111000....0:
randomly chosen legal pairs of either Alpha or Beta words

Learning remained on. Data was gathered over 10

independent runs of the program. hidden units. After exposure during learning to 30,000

Using the definition of priming given above, it can be . : .
. I sentences (90,000 items), the pattern of hidden-unit clusters
?%?Tthiat Iri] ;hlﬁ Srl?’tll\l rgodrel p”rg'?r? ?r:(;[hﬁ/"v)\(/g(rjd C%Egiﬁoayshown in Figure 9 developed (calculated from a random
S _signilicantly decrease sample of 100 words).

(Figure 8). The Y-axis shows the Euclidean distancé
between the network’s actual output and the target word.

tC.
he network had 48 input and 48 output units and 100

29
——All-Alpha
27+ —=— Mixed
25+
Alpha
23+
21+
Beta
19+
1.7 |l
Unrelated Homograph

Alph ="
P Figure 9. Hidden-unit representation clusters for 1536

Alpha and Beta words after 90,000 items (Alpha words are
preceded by a series of X's to distinguish them from Beta
words, which are preceded by a single “b”)

Figure 8. Priming of LIFTS by TRAT is significantly

reduced in the Mixed Condition. The Y-axis represents
the Euclidean distance between the output of the
network after the prime word (either an unrelated Alpha

word or TRAT) is presented and the word LIFTS. The The overall internal organization of the hidden-unit
X-axis shows the type of prime word Comparé with representations is basically the same as it was for the much
Figure 7 ' smaller set of 24 words. Although a great deal more work

needs to be done on this model, this result for over 1500

Means for the English-Unrelated and Homograph-ReIateWords would seem to indicate that there is at least some

conditions were calculated for each run of the program anf@sonable hope that the SRN model could scale up.

submitted to a mixedANOVA. The interaction of .

Context(All-Alpha, Mixed) X Prime-Relatedness(Alpha- Conclusion

Unrelated, Homograph-Related) was significant, F(1,183)3his paper suggests that bilingual memory phenomena that

4.4, p<0.05. The priming effect in the All-Alpha condition have been explained by an interactive-activation model of

was 0.85, compared to 0.49 in the Mixed condition. the BIA type (Grainger, 1993) may also be able to emerge
In other words, using a canonical definition of primingfrom a simple recurrent connectionist network (SRN) model

as a measure of the proximity of the output of the networkElman, 1990; Cleeremans & McClelland, 1991;

to the target, the SRN model exhibits a loss of primingCleeremans, 1993). The SRN model presented here

comparable to that observed in real bilinguals. receives as input a long, undifferietéd sequence of
sentences in two micro-languages and can reproduce a
Can the SRN Model Scale Up? certain number of important effects that have been observed

in studies of bilingual memory, in particular, those related to
goss—lingual priming by interlexical homographs. In
apdition, the internal representations that the SRN develops
reflect not only the divisions between the two languages, but
53‘4%0 to the grammatical structure within each language. The

The present model has been tested on as many as 1 rganization of these internal representations is generall
words (256 words per category) with the same simple SV(E.g ; P . generally
-Nighly resistant to damage but, under certain exceptional

grammar. For the simulations involving 1536 words, the six. I ; . .
categories of words were coded with 8 bits per wor ircumstances, can also exhibit severe disruption following

. he removal of a as little as one node from the hidden layer.
category, as follows: Even though this initial work would seem to demonstrate
that an Elman network might be able to serve as a useful

Real languagesbviously contain more than 12 words and
have a far more complex grammatical structure than eith
Alpha or Beta. Consequently, it is necessary to say a fe
words about the problem of scaling up.



model for bilingual memory, it is also clear that a great deal memory. Proceedings of the 19th Annual Cognitive
of work still needs to be done. However, these initial Science Society Conferentdew Jersey: LEA 241-246.
positive results would suggest that further exploration of th&rainger, J. & Beauvillain, C. (1988)c8essing interlexical

SRN model of bilingual memory is justified. homographs: Some limitations of a language-selective
accessJournal of Memory and Language, B58-672.
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