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IV. Article definition 
Unlike human brains, connectionist networks can forget previously learning 
information suddenly and completely (i.e., “catastrophically”) when learning new 
information. Various solutions for overcoming this problem are discussed. 
 
V. Introduction 
 
The connectionist paradigm in artificial intelligence burst into prominence in 1986 
with the publication of Rumelhart and McClelland’s two-volume collection of articles 
entitled Parallel Distributed Processing: Explorations into the Micro-structure of 
Cognition. The “connectionist revolution,” as it is sometimes called today, 
unquestionably began with the publication of this book. Some twenty years earlier, 
research on an elementary type of neural network, perceptrons (forerunners of modern 
connectionist networks), had come to a sudden halt in 1969 with the publication of 
Perceptrons, Minsky and Papert’s careful mathematical analysis of the capacities of a 
particular class of single-layered perceptrons. Minsky and Papert’s work 
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demonstrated a number of fundamental theoretical limitations of elementary 
perceptrons. Multi-layered perceptrons and new learning algorithms were developed 
over the course of the next two decades that allowed these limitations to be overcome. 
These new networks were able to do many of the things that posed severe problems 
for traditional symbolic artificial intelligence programs. For example, they were able 
to function appropriately with degraded inputs, they could generalize well, they were 
fault-tolerant, etc. The late 1980’s marked a gold-rush period of attempts to apply 
these networks to everything from underwater mine detection to cognition, from stock 
market prediction to bank-loan screening.  
 At the end of the 1980’s, however, a problem with these multi-layered 
perceptrons networks came to light. McCloskey & Cohen (1989) and Ratcliff (1990) 
showed that the very property — namely, a single set of weights that served as the 
network’s memory — that gave these networks such power was the root cause of an 
unsuspected problem: catastrophic interference. Grossberg (1982) had previously cast 
this problem in the more general context of “stability-plasticity.” In short, the problem 
was to determine how network architectures could be designed that would be 
simultaneously sensitive to new input without being overly disrupted by it? 
 Catastrophic interference is the “stability-plasticity” problem in spades. It occurs 
when a network has learned to recognize a particular set of patterns and then is called 
upon to learn a new set of patterns. The learning of the new patterns modifies the 
weights of the network in such a way that the originally learned set of patterns is 
forgotten. In other words, the newly learned patterns suddenly and completely — 
“catastrophically” — erase the network’s memory of the previously learned patterns.  
 
VI. Main Text 
 
Catastrophic forgetting vs. normal forgetting 
 
 Catastrophic forgetting is significantly different from normal human forgetting. 
The latter is a normal cognitive process; the former is basically unknown in human 
cogntition. Some of the best known experiments in human forgetting were conducted 
by Barnes and Underwood (1959). Subjects begin by learning a set of paired 
associates (A-B) consisting of a nonword and a real word (e.g., pruth – heavy, etc.). 
Once this learning is complete, they learn to associate a new real word with each of 
the original nonwords (A-C). At various points during the learning of the A-C pairs, 
they asked subjects to recall the originally learned A-B associates. McCloskey and 
Cohen (1989) ran a similar A-B/A-C paradigm using addition facts on a standard 
connectionist network. After five learning trials in the A-C condition, the network’s 
knowledge of the A-B pairs had dropped to 1% and was completely gone after 15 
trials. In other words, the newly learned pairs had catastrophically interfered with the 
originally learned associated pairs.  
 The problem for connectionist models of human memory — in particular, those 
models with a single set of shared multiplicative weights (e.g., feedforward 
backpropagation networks) — is that catastrophic interference, for all intents and 
purposes, is not observed in humans. This raises a number of issues of significant 
practical and theoretical interest. Arguably, the most important issue for cognitive 
science is understanding how the brain managed to overcome the problem of 
catastrophic forgetting. The brain is, after all, a distributed (or semi-distributed) neural 
network, and yet, does not exhibit anything like the catastrophic interference seen in 
connectionist networks. In particular, what neural architecture allowed the brain to 



overcome catastrophic interference, and what characteristics of neural networks, in 
general, will allow them to overcome this?  
 At present, in order to avoid catastrophic interference, most connectionist 
architectures rely on learning algorithms which require the network to cycle through 
all of the patterns to be learned over and over, gradually adjusting the weights a small 
amount with each pattern. Finally, after many cycles (called epochs) through the 
entire set of patterns, the network will (usually) converge on an appropriate set of 
weights for the set of patterns that it is supposed to learn. The problem is that humans 
do not learn in this way remotely similar to this. In order to memorize ten piano 
pieces, say, we do not play each piece once and then cycle through all the pieces over 
and over until we have learned them all. We learn piano pieces — and just about 
everything else — sequentially. In other words, we start by learning one or two pieces 
thoroughly and then learn a new piece, then another, and so on. However, were a 
standard connectionist network to do this, each new piece learned by the network 
would most likely completely erase from its memory all previously learned pieces. 
Certainly, by the tenth piece the network would have no recollection whatsoever of 
the first piece. The moral of the story is that, in order for connectionist networks to 
exhibit anything like human sequential learning, they must overcome the problem of 
catastrophic interference. 
 
Measures of catastrophic interference 
 
 In this section we will define the two most common measures of catastrophic 
interference — namely, “exact recognition” and “relearning.” In both cases, the 
network is trained to criterion on an initial set of patterns. It is then given a second set 
of patterns to learn. Once it has learned this second set of patterns, we use one of the 
two measures of forgetting to determine the effect on the originally learned patterns of 
having learned the second set of patterns. For the exact-recognition measure, we 
check to see what percentage of the original patterns can still be recognized by the 
network. (In other words, we give the input part of the pattern to the network and see 
what output it produces. If it produces the correct output, the network is considered to 
have “recognized” the pattern.) The relearning measure, first proposed by Ebbinghaus 
for human memory in the late 19th century, involves seeing how long it takes the 
network to relearn the originally learned patterns. Thus, even if the rate of exact 
recognition is very low, the knowledge might lie “just below the surface” and be able 
to be relearned very quickly. The original studies by McCloskey & Cohen (1989) and 
Ratcliff (1990) relied on an exact-recognition measure. A study by Hetherington and 
Seidenberg (1989) using the relearning measure showed that, at least in some cases, 
catastrophic interference might be less of a problem than was thought because the 
network, even if it could not recognize the originally learned patterns exactly, it could 
relearn them very quickly.  
  
Solutions to the problem 
  Attempts to solve the problem came quickly. One of the first was the 
suggestion by Kortge (1990) that the problem was due to the backpropagation 
learning algorithm. He proposed a modified learning algorithm using what he called 
“novelty vectors” that did, in fact, decrease catastrophic interference. The key idea of 
novelty vectors was “blame assignment.” Kortge’s learning rule was developed for 
auto-associative networks, i.e., networks that, starting from a random weight 
configuration, learn to produce on output the vectors that they received on input 



(hence the name “auto-associator” for this type of network). Each pattern to be 
learned was fed through the network and the output was compared with the intended 
output (i.e., the input). Kortge called this difference vector a “novelty vector” because 
the bigger the activation differences at each node, the more novel the input, since for 
vectors that the network had already learned there would be little difference between 
output and input. This novelty vector indicated where to change the weights the most: 
the greater the novelty activation, the more the weights were changed. This technique 
did, indeed, significantly reduce catastrophic interference, even though the technique 
only applied to auto-associative networks. 
 French (1992) argued that catastrophic forgetting was in large measure due to 
excessive overlap of internal representations. He claimed that the problem lay with 
the fully distributed nature of the network’s internal representations and suggested 
that by developing algorithms that produced “semi-distributed” internal 
representations (i.e. representations whose activation was spread only over a limited 
set of total number of hidden nodes) catastrophic interference could be reduced. To 
this end he suggested a learning algorithm, “node sharpening,” that developed far 
sparser internal representations than standard backpropagation. The result was a 
significant reduction in catastrophic interference. The overly sparse representations 
developed by this technique, however, resulted in a significant decrease in the 
network’s ability to discriminate categories. What was needed was a means of making 
representations as highly distributed as possible and, at the same, time as separated as 
possible. 
 Brousse and Smolensky (1989) and McRae and Hetherington (1993) showed that 
the problem was closely related to the domain of learning. In domains with a high 
degree of internal structure, such as language learning, the problem is much less 
acute. McRae and Hetherington (1993) eliminated the problem by pre-training the 
network on a random sample of patterns drawn from the domain. Because of the pre-
existing structure in the domain, this sample was enough to capture the overall 
regularities in the domain. Consequently, the new patterns to be learned were 
perceived by the network to be nothing more than variants of already-learned patterns 
and did not interfere with previously learning.  
 The early attempts to solve the problem of catastrophic interference attempted to 
reduce representational overlap on input or internally. Kortge (1990) and 
Lewandowsky (1991) modified the input vectors in an attempt to achieve greater 
mutual orthogonalization (this is equivalent to reducing the overlap among input 
vectors). French (1992), Murre (1992), Krushke (1993) and others developed 
algorithms that reduced internal representational overlap and, in doing so, managed to 
significantly reduce the amount of catastrophic interference. 
 Certain authors (e.g., Carpenter, 1994) have laid the blame for the problem of 
catastrophic interference on a particular architectural feature of the most widely used 
class of connectionist networks, namely their use of multiplicative connection-
weights. In the ART family of networks (Carpenter & Grossberg, 1987), new input 
does not interfere with previously learned patterns because the network is able to 
recognize new patterns as being new and assigns a new set of nodes for their internal 
representation.  
 Hopfield networks, and related architectures, have been shown to have critical 
saturation limits beyond which there is a radical drop off of memory performance. For 
these networks, unlearning is initially gradual and then, after the memory becomes 
saturated, forgetting becomes catastrophic. 
  



Rehearsal and pseudorehearsal 
 Most connectionist networks learn patterns concurrently, which, in terms of 
human cognition, is a very contrived type of learning. For a given set of n patterns, 
{P1, ..., Pn}, the network will successively adjust its weights by a very small amount 
for all of the patterns and then will repeat this process until the network has found an 
appropriate set of weights that allow it to recognize all n patterns. This, in itself, is a 
strange and non-cognitive way of learning. In addition, if a new set of patterns {Pn+1, 
..., Pm} must then be learned by the network, the standard way of handling the 
situation is to go find the original set of patterns, mix them in with the new patterns to 
be learned, creating a new set {P1, ..., Pn, Pn+1, ..., Pm} and then train the network on 
this new expanded set. In this way, the new patterns will indeed not interfere with the 
old patterns, but there is a major problem with this technique — namely, in the real 
world, the originally learned patterns are often no longer available and cannot simply 
be added to the set of new patterns to be learned.  
 In 1995 Anthony Robins made a major contribution to research on catastrophic 
forgetting with a technique based on what he called pseudopatterns (Robins, 1995). 
His idea was simple and elegant. Suppose that a connectionist network with n inputs 
and m outputs has learned a number of input-output patterns {P1, P2, . . ., PN} 
generated by some underlying function f. Assume that these original input-output 
vectors are no longer available. How could one determine, even approximately, what 
function the network had originally learned? One way would be to create a number, 
M, of random input vectors of length n, {î1, ..., îM}. These pseudo-input vectors would 
be fed through the previously trained network, producing a set of outputs {ô1, ..., ôM} 
corresponding to each of the pseudo-inputs. This would result in a set of 
pseudopatterns: S = {ψ1, ψ2, . . ., ψM} where ψ1: î1→ô1; ψ2: î2→ô2; . . . ψN: îM→ôM. 
This set of pseudopatterns would approximate the prior learning of the network. The 
accuracy of the pseudopatterns in describing the originally learned function would 
depend on the nature of the originally learned function. Thus, when the network had 
to learn a new set of patterns to be learned, it would mix in a number of 
pseudopatterns with the new patterns to be learned.  
 The pseudopattern technique was the basis of dual-memory models developed by 
French (1997) and Ans & Rousset (1997) which loosely simulate the hippocampal-
neocortical separation, considered by some to be the brain’s way of overcoming 
catastrophic interference (McClelland, McNaughton, O’Reilly, 1995). These models 
incorporate two separate, continually interacting pattern-processing areas, one for 
early-processing, one for long-term storage, information being passed back and forth 
between the areas by means of pseudopatterns. This allows them to forget gradually 
and to perform sequential learning appropriately. Somewhat unexpectedly, these dual-
memory networks also exhibit a gradual representational “compression” (i.e., fewer 
active nodes) over time of the long-term internal representations, a fact which, if it 
can be shown to also occur in humans, might help explain certain types of category-
specific deficits commonly observed in amnesiacs (French & Mareschal, 1998). 
  
Other techniques for alleviating catastrophic forgetting in neural networks 
 
A number of other techniques have been developed to address the problem of 
catastrophic interference. Notably, there have been attempts to combine auto-
associative architectures with sparse representations to reduce the level of catastrophic 
interference. Architectures using two different kinds of weights on the connections 
between nodes, one which decays rapidly to zero, the other that decays much more 



slowly. Convolution-correlation models such as CHARM and TODAM, which are 
mathematically equivalent to certain types of connectionist networks (sigma-pi 
networks) seem to be relatively immune to catastrophic interference, at least up to a 
point. Cascade-correlation learning algorithms have also been tried as a means of 
alleviating catastrophic interference with some success. For a more complete review 
of the various models that have been developed to handle the problem of catastrophic 
interference in connectionist networks, see French (1999).  
 
Summary 
The problem of catastrophic interference in connectionist networks has been known 
and studied since the early 1990’s. The problem is of particular importance because 
sequential learning of the kind done by humans cannot be achieved unless a solution 
is found to this problem. In other words, network models of cognition must, as 
Grossberg has stressed, be sensitive to new input but not so sensitive that the new 
input destroys previously learned information. Certain types of patterns, such as those 
found in highly structured domains, are less susceptible to catastrophic interference 
than patterns from less well structured domains. Nature seems to have evolved a way 
of keeping new learning (hippocampal learning) at arms’ length from previously 
learned information stored in the neo-cortex (neo-cortical consolidation), thus 
physically preventing new learning from interfering with previously learned 
information. Connectionist models have been developed that simulate this cerebral 
separation. This may not be — in fact, is certainly not — the only way to route to 
solving the problem of catastrophic interference, but its close relationship with the 
way in which the brain may have solved the problem, makes further exploration of 
these dual-memory models of particular interest. 
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