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Abstract

It is well known that when a connectionist network is
trained on one set of patterns and then attempts to add new
patterns to its repertoire, catastrophic interference may
result.  The use of sparse, orthogonal hidden-layer
representations has been shown to reduce catastrophic
interference.  The author demonstrates that the use of sparse
representations may, in certain cases, actually result in
worse performance on catastrophic interference.   This
paper argues for the necessity of maintaining hidden-layer
representations that are both as highly distributed and as
highly orthogonal as possible.  The author presents a
learning algorithm, called context-biasing, that
dynamically solves the problem of constraining hidden-
layer representations to simultaneously produce good
orthogonality and distributedness.  On the data tested for
this study, context-biasing is shown to reduce catastrophic
interference by more than 50% compared to standard
backpropagation.  In particular, this technique succeeds in
reducing catastrophic interference on data where sparse,
orthogonal distributions failed to produce any
improvement.

Introduction

It is well known that when a connectionist network is
trained on one set of patterns and then attempts to add new
patterns to its repertoire, catastrophic interference — in other
words, the complete loss of all of its previously learned
information — may result (Ratcliff, 1989; McCloskey &
Cohen, 1990; Hetherington & Seidenberg, 1989).    This
type of radical forgetting is not only psychologically
implausible — learning the names of three new people does
not cause us to forget the names of everyone else we have
ever met  — but also poses significant problems for
applications-oriented uses of connectionist networks.

French (1991) suggested that  catastophic forgetting was
caused by overlapping (i.e., non-orthogonal) patterns of
activation at the hidden layer.  A learning technique, called
activation sharpening, was proposed that reduced this overlap
by creating “sparse” representations (i.e., representations
consisting of a few highly active nodes and many nodes with
activation levels close to 0).  This technique did produce a
significant decrease in catastrophic forgetting.  A number of
authors (Murre, 1992; McRae & Hetherington, 1993) also
developed techniques that resulted in improved
orthogonalization of representations at the hidden layer and
they, too, observed similar decreases in catastrophic

interference.  Lewandowsky & Goebel (1991) developed a
technique for orthogonalization of input vectors that also
resulted in improved orthogonality of representations at the
hidden layer.  All of these techniques have been shown to
decrease catastrophic interference.

In this paper I will argue that increased orthogonality of
hidden-layer representations is only part of the story.  When
attempts to produce representational orthogonality
excessively restrict of the distributedness of representations,
there may be no reduction (or even an increase) in
catastrophic forgetting compared to standard backpropagation
(Figure 3).

The necessity of orthogonality and
distributedness

The central claim of this paper is that, in order to reduce
catastrophic interference, learning algorithms for
connectionist networks must dynamically produce hidden-
layer representations that are, insofar as possible, both:

• highly orthogonal and
• highly distributed across the hidden-layer.

I will introduce a simple recurrent learning algorithm,
called context biasing, that produces hidden-layer
representations that satisfy both of these constraints.  To
test this algorithm, I selected a data set for which sparse
representations, even though highly orthogonal, failed to
reduce catastrophic forgetting (and in many cases aggravated
it).  Context biasing was found to reduce catastrophic
forgetting for this data by more than 50% compared to
standard backpropagation.

Orthogonalization using activation
sharpening

Activation sharpening (French, 1991) reduced catastrophic
interference by producing sparse hidden-layer representations.
The technique is best explained by considering one-node
activation sharpening.  On each input/teacher presentation P,
there is first a standard feedforward–backpropagation pass.
Then the same input pattern is then fed forward from the
input layer to the hidden layer, producing a particular
activation pattern at the hidden layer — the "natural" hidden-
unit representation.  A "target" hidden-layer representation is
then created by slightly increasing the activation of the
single most active node and decreasing the activation of all
of the other nodes.  The difference between the "target" and



the "natural" hidden-layer representations serves as an error
signal analogous to the output/teacher error signal in
standard backpropagation.  This hidden-layer error is
backpropagated from the hidden layer to the input layer,
changing the input-to-hidden-layer weights appropriately.
Under this "backpropagation-plus-halfpropagation"
technique, the hidden unit representations are gradually
"sharpened", with each representation consisting of one
highly active node and the other nodes having very little
activity.  k-node sharpening involves modifying hidden-unit
representations by increasing the activation of the k most
active nodes (instead of only the single most active node in
one-node sharpening), and decreasing the activation of the
others.

French (1991), Murre (1992) and Lewandowsky & Goebel
(1991) have shown that this technique was effective in
reducing activation overlap among hidden-layer
representations which, in turn, decreased catastrophic
forgetting.  Unfortunately, all of the databases used to test
this particular orthogonalization technique were very small.
Problems became apparent only when I attempted to use the
technique on a significantly larger database.

Problems with sparse representations

The problem with orthogonalizing techniques that rely on
sparse representations is that, while this may indeed produce
the desired orthogonality among hidden-layer representations,
they also reduce the effective dimensionality of the hidden-
layer "representation space" (i.e., decrease the number of
patterns that can be encoded by the hidden layer).

If a network has ten hidden units and one-node sharpening
is implemented, for example, each hidden-unit representation
will gradually be forced to have one unit with an activation
close to 1 while the remaining nine units will have little or
no activation.  This means that, effectively, only ten distinct
hidden-layer representations are possible.  Therefore, if
fifteen different categories of patterns are to be learned, the
network will have great difficulty accomodating all of them
in its hidden-layer representation space.  This will mean that
the network will invariably take a long time to converge,
and probably will not converge at all.  The unavoidable
conclusion is that networks with sparse hidden-layer
representations have a diminished capacity to categorize.
This becomes a problem when the number of different
classifications that the network must make exceeds the
number of possible representations at the hidden layer.

Lewandowsky & Goebel (1991) and Lewandowsky &
Shu-Chen (1993) have claimed that the ability of a network
to generalize remains basically unaffected in networks that
achieve representational orthogonality by activation
sharpening (or any other technique that produced sparse
representations consisting of a few highly active nodes and
many completely inactive nodes). However, the situation
turns out to be somewhat more problematic.   Lewandowsky
et al. showed that overall levels of activation on output are
largely unaffected by the use of sparse, orthogonal hidden-
layer representations and from this they concluded that the
ability of the network to generalize would not be affected.

The difficulty is that, while sparse orthogonalization
techniques may not change the overall level of activation,
the patterns of output activation are radically modified.  As
the following examples show, the use of sparse orthogonal
representations does result in information loss across the
hidden layer and, ultimately, impairs the network's ability
both to categorize and to discriminate among disparate input
patterns.

Consider a 6-2-3 backpropagation network that must
learn the following three associations:

110000 —> 100 ;
001100  —> 010;
000011  —> 001 .

The standard backpropagation network can easily learn these
three pairs.  But  if, instead of allowing the activations in
the hidden layer to range freely from 0 to 1, assume that
only two hidden-layer representations are allowed — namely,
0 1  and  1 0?  (This would be the theoretical result of one-
node activation sharpening in this case.)  Now the network
must learn all three associations with only two orthogonal
hidden layer representations and it will fail to converge.

Now, let us consider the problem of pattern discrimination
using a slightly different example.  Assume we have an 8-
3-5 network and we want it to learn three patterns:

11110000  —> 10000 ;
00111100  —> 00100 ;
00001111  —> 00001 .

The network then learns these patterns with orthogonalized
hidden-layer vectors  1 0 0,  0 1 0, and 0 0 1.  This will
cause three of the hidden-to-output weights to have high
positive values, and all of the others to have high negative
values (Fig. 1).

  

bold wts >> 0;
other wts << 0

Figure 1. The effects on the hidden-to-output weights of
one-node sharpening

Forcing the hidden-layer representations into the three all-
or-nothing representations above has the effect of causing
three of the hidden-to-output weights (those indicated in bold
in Figure 1) to be very large, while all of the others will
have large negative values.  With these orthogonalized
hidden-layer vectors, the second and fourth output nodes will
effectively cease to participate in the output, since their
activation levels will remain unchanged regardless of the
input.  This means that the network will produce "3-
dimensional" output for all input patterns (Figure 2).  A
standard backpropagation network, on the other hand, will
produce a much richer, 5-dimensional output response
pattern for each of the new input vectors.  Collapsing five
output dimensions to three means that some of the patterns



that could have been discriminated by the standard network
will no longer be discriminated by the orthogonalized
network.  For this reason, it is necessary to relax the
constraints on orthogonality.  To produce output that is
better than 3-dimensional, we must have hidden
representations that are not always orthogonal.  However, if
we completely renounce attempts at orthogonality, severe
foretting will result.  An orthogonalization process that
ensures that as large a number of nodes as possible will
participate in the representations should have the desired
effect of reducing catastrophic interference without
completely crippling the network’s ability to generalize,
categorize, etc.  But is it possible to achieve a high degree of
both distributedness and  separation of hidden-layer
representations?

These nodes no longer effectively participate in 
the output

bold wts >> 0;
other wts << 0

Figure 2. Restricting the dimensionality of hidden-layer
representations decreases the dimensionality

on the output layer

 Testing sparse, orthogonal
representations on a larger data set

In order to further study the use of sparse orthogonalized
representations, I used data from the 1984 Congressional
Voting Records (Murphy & Aha, 1992).  The voting records
of each member of Congress, along with his or her party
affiliation, is given in this database.  I trained a 16-10-1
feedforward backpropagation network to associate 50
different voting patterns with  party affiliation.  I then
invented a small set of ten "maverick" members of
Congress, members who, on six key issues, voted like
Democrats but declared themselves to be Republicans or
vice-versa.  I had the network learn this new set and, as
expected, when I tested its performance on the original set of
fifty associations, the network had completely forgotten
them.  I then retested the network for savings.  The speed
with which the network relearned the original data was used
to measure how completely the network had forgotten the
original data.

When sparse representations were used, the network
performed significantly worse than when it used more highly
distributed representations (Figure 3.)  The reason for this
can be seen by looking at the average hidden-layer activation
profiles for Democrats and Republicans produced by two-
node sharpening (Figure 4).  (These were made from one

hundred separate runs of the network on the original data set
of 50 members of Congress.)  Even though average
activation overlap between the two vectors is low because of
a large number of shared inactive nodes, the amount of
forgetting remains high.  Notice, however, that all of the
overlap occurs over a very small number of nodes.  Thus,
when the weights associated with these nodes change, this
will disturb the prior representations for both Democrats and
Republicans.  Since only a few nodes are actually
contributing activation, when the weights associated with
one of these active nodes change significantly, very few
other active nodes can "come to the rescue" and compensate
for the changes to the other weights.

0

20

40

60

80

E
po

ch
s

BP 1 2 3 4 5 6 7 8 9
No. of hidden nodes sharpened

RetrainingTraining

Figure 3. Training and retraining times for standard
backpropagation versus sharpening

What we should see is that when activation patterns of
representations are well distributed and well separated,
relearning time should drop.  As we can see in Figure 3,
four-node sharpening, in which the representations are
relatively well distributed (and reasonably well separated),
causes retraining time to  drop to what it was for standard
backpropagation.  Although the discussion is beyond the
scope of this paper, it turns out that the amount of
separation among competing representations is a very good
predictor of catastrophic interference:  the greater the
separation, the less the forgetting.  The reason that using the
amount of activation overlap worked in some cases to
predict catastrophic forgetting is quite simple:  high
representational separation implies low overlap (but not
necessarily vice-versa).  So in many cases, reducing overlap
at the hidden layer appeared to be the cause of reduced
catastrophic interference, but in reality, representational
separation also increased, the latter being the actual cause for
improved performance on catastrophic forgetting.  As the
Voting Records database example shows, decreasing overlap
by using sparse representations is not always sufficient to
reduce catastrophic forgetting;  increased separation of
representations is.  (In fact, any time the non-zero activation
level of some node is the same for all representations, that
node becomes, in effect, a bias node, i.e., a node whose
activation level, usually 1, remains unchanged for all
inputs.)
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Figure 4:  Two-node sharpened representations

Context biasing

Context biasing produces precisely the kind of
representations that are both well distributed and well
separated.  The technique requires the network to be able to
remember both the previous teacher pattern and the previous
hidden-layer representation.  When a new pattern is presented
to the network, it is fed forward through the network,
whereafter the weights are changed according to the standard
backpropagation algorithm.  The difference, measured in
terms of the average Hamming distance, between the new

teacher and the previous one is computed.  (Given  two  k-
bitvectors, the average Hamming distance between them is
the number of bits that must be changed to transform one
vector into the other divided by k.)  The hidden-layer
representation for the new association is then compared to
the corresponding representation for the prior association.
The new representation is then "separated" from the prior
representation according to the following separation rule:

Modify the activation, A, of each node of the new 
representation as follows:

if Anew ≥ Aprevious
then Anew = Anew + αβ(1− Anew);

if Anew < Aprevious
then Anew = (1− αβ) Anew

where
α = Hamming distance between the previous and 

the new teacher patterns;
β = biasing coefficient (usually 0.5 or 0.2)

This new "context-biased" representation (i.e., the “target”
hidden-layer representation) is then "locked into" the input-
to-hidden weights by backpropagating from the hidden layer
to the input layer an "error signal" consisting of the
difference between the "natural" hidden-layer representation
and the corresponding "context-biased" (target)
representation.  This "locking-in" technique is discussed in
(French 1991).

new
teacher

1α = Hamming distance = 1

new input

0

previous input

previous
teacher

.4 .3 .8 .9 .1 .4

Separate the new representation
from the previous one based on 
the size of α: the greater α, the greater 
the separation.

New context-biased representation: .92 .08 .32

Figure 5.  Modifying hidden-layer representations with context-biasing

Results

Figure 6 below shows hidden-layer representation profiles
for Democrats and Republicans that are produced with
standard backpropagation.  (Data was collected over 100 runs
of the program using a 16-10-1 network with a learning rate
of 0.2 and momentum of 0.9.).  Notice that, while the
representations for Democrats and Republicans are well
distributed, they are not particularly well separated.

On the other hand, when context biasing (β = 0.2) is used
(Fig. 7), significantly different representation profiles result.
Notice that the distributions for both Democrats and
Republicans  are  not  only  well distributed across the
entirehidden layer, but they are also well separated.  If the
above analysis is correct, we should therefore see a
significant reduction of catastrophic forgetting with respect
to backpropagation.  As the results in Figure 8 show, that
isindeed what happens.  We get over a 50% reduction in
relearning time when the context-biasing is used.
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Figure 6.  Hidden-layer representation profiles with
backpropagation

For similar reasons — reduced interference during learning
— context-biased networks also train up somewhat more
quickly.  Finally, preliminary work suggests that the
reduction in relearning times is largely unaffected by the
order of presentation of the data.  In one experiment, all
Republicans were presented to the network, followed by all
Democrats and relearning times remained similar to those
indicated in Figure 8.
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Figure 7 .  Hidden-layer representation profiles with context-
biasing

Conclusions

This paper addresses the fundamental problem of stability
and sensitivity in learning.  How can neural networks be
designed to easily acquire new information without
disturbing old, well-learned information — something we
humans do so easily?  Perhaps it will ultimately be
necessary to develop tandem systems of neural networks
with one “neocortical” network for storing well-rehearsed
concepts and another “hippocampal” network to handle new
input and to serve as a teacher to the neocortical network.
French (1994) has developed such a two-system network and
McClelland, McNaughton, & O’Reilly (1994) have also
argued for the necessity of this type of two-tiered system.
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Figure 8.  A significant (> 50%) reduction in
forgetting with context biasing

However,the work presented in this paper suggests that at
least some of the advantages of a two-network system can be
achieved in a single network by using context biasing to
appropriately constrain the hidden-layer representations
during learning.  In particular, context biasing produces
representations that are both well distributed and as
orthogonal as possible, thereby significantly reducing
catastrophic forgetting.
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