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Abstract

The brain must be capable of achieving extraordinarily
precise sub-millisecond timing with imprecise neural
hardware. We discuss how this might be possible using
synfire chains (Abeles, 1991) and present a synfire chain
learning algorithm for a sparsely-distributed network of
spiking neurons (Sougné, 1999). Surprisingly, we show
that this learning is not subject to catastrophic
interference, a problem that plagues many standard
connectionist networks. We show that the forgetting of
synfire chains in this type of network closely resembles
the classic forgetting pattern described by Barnes &
Underwood (1959).

Introduction
A professional pitcher can send a baseball hurtling
towards a batter at speeds approaching 100 miles an
hour. In a mere 2 milliseconds the ball moves three
inches, more than the width of a baseball bat. Given the
long chain of neurons that must fire sequentially with
incredible precision in order for the bat to connect with
the ball, how could anyone ever hit a baseball?
Consider gymnastics. The landing of a skilled gymnast
dismounting from the high bar with a triple somersault
is completely determined by the millisecond-precise
instant he releases the bar. How is it possible to achieve
the extraordinary timing accuracy necessary to
consistently hit this beautiful landing correctly?

The problem is to find a way to make imprecise
neurons act in an extremely precise manner. Nature has
clearly found a way to circumvent the imprecision of
individual neuron firings. The solution seems to rely on
the presence of large populations of interacting
neurons. In this paper we will discuss a mechanism for
achieving precise timing, synfire chains (Abeles, 1991),
that has received considerable empirical support. We
will consider how the brain might learn these synfire
chains and will present a neurobiologically plausibly
computer simulation of synfire chain learning (see
Sougné, 2001). Most importantly, we will show that the
problem of catastrophic interference, a problem that
plagues many types of neural networks (see French,
1999, for a review), does not seem to be a problem for
synfire chains implemented in a sparsely-distributed
network of spiking neurons. We simulate the classic
forgetting experiment of Barnes & Underwood (1959)
on a network designed to learn synfire chains and show
that forgetting of information encoded in these
simulated synfire chains very closely resembles the

forgetting patterns of humans, as demonstrated by
Barnes & Underwood. This leads to the prediction that
real neural synfire chains will be forgotten gradually,
rather than catastrophically.

Synfire Chains
Empirical data demonstrate the existence of very
precise temporal behavior in neuron firings. For
example, researchers have recorded spike timing of
different cortical cells in monkeys (Abeles, 1991, Prut
& al, 1998) and have observed the following stimulus-
dependent pattern: when an initial neuron, A, fired, a
second neuron, B, would fire 151ms later, followed by
a third neuron, C, that would fire 289ms later with a
precision across trials of 1 ms! Intervals of this
duration require dozens of transmission delays from
neuron A to neuron C. One of the major hypotheses
about how this phenomenon could occur involves so-
called “synfire chains.” Abeles (1991). The other
hypothesis is based on an increase in a population rate,
which builds excitation in a downstream population,
which, in turn, increases its firing rate, etc. (see Shadlen
& Newsome, 1994). According to Abeles’ hypothesis,
since cortical synapses are relatively weak, many inputs
to cells must arrive at the same time for them to fire.
Consequently, each step in the synfire chain requires a
significant pool of neurons whose simultaneous firing
raises the potential of the next pool of neurons to allow
them to fire. Recent experiments (Prut & al, 1998)
indicate that these precise temporal firing sequences
correlate more to behavior than to rate modulation and
do not seem to be a byproduct of rate modulation. This
would seem to buttress the synfire chain hypothesis.

Previous work on synfire chain learning has focused
on how they can develop from a chaotic net with an
unsupervised Hebbian learning rule (Bienenstock,
1995; Hertz & Prügel-Bennet, 1996). These studies
involved an external stimulus which makes a large pool
of neurons fire simultaneously at a particular instant.
Subsequently, a sequence of successive large pools of
simultaneous neuron firings occurs, produced by the
random connection weights of the network. A given
neuron will only fire if a large enough number of its
presynaptic neurons provoke an increase of
postsynaptic potential simultaneously. Connections are
modified by a Hebbian learning rule. After learning,
when the previously learned stimulus is presented
again, the same chain fire, thereby constituting a synfire
chain. These studies show that these chains are stable,



noise tolerant and that one network can store many
different chains. Formal analysis showed that there is a
relation between network size and the length of
learnable synfire chains (Bienenstock, 1995), and that
the recall speed should be faster than the training speed
of the sequence (Sterratt, 1999).

In previous modeling work (Sougné, 2001), it has
been shown how a synfire chain can develop, thereby
linking two pools of neuron firings caused by two
sequential external stimuli. After learning, the first
external stimulus will reactivate the stored synfire
chain. It was also shown that synfire chain learning
depends on the size of the network, the presence of long
term depression (LTD) and the sparseness of
connections. It turns out, surprisingly, that these synfire
chains are not subject to catastrophic interference.

Catastrophic Interference
Gradual forgetting is one of the fundamental facts of
cognition, which means that plausible models of human
cognition must exhibit progressive forgetting of old
information as new information is acquired. Only rarely
does new learning in natural cognitive systems
completely (or “catastrophically”) interfere with
previously learned information (see, for example,
French & Ferrara, 1999). However, it turns out that for
a very large class of commonly used connectionist
models — those with a single set of shared (or partially
shared) multiplicative weights (and most notably,
standard feedforward backpropagation networks) —
learning new information can quite easily completely
destroy all traces of previously learned information
(McCloskey & Cohen, 1989; Ratcliff, 1990). In fact,
the very features that give these connectionist models of
memory their much-touted abilities to generalize, to
function in the presence of degraded input, etc., are the
root cause of catastrophic forgetting (See French, 1999,
for a review of research on catastrophic interference).

Catastrophic interference is a radical manifestation of
a more general problem for connectionist models of
memory — in fact, for any model of memory —, the
so-called  “stability-plasticity” problem (Grossberg,
1982). The problem is how to design a system that is

simultaneously sensitive to, but not radically disrupted
by, new input.

A number of ways have been proposed to avoid the
problem of catastrophic interference in connectionist
networks. In the connectionist network that is our brain,
McClelland, McNaughton & O’Reilly (1995) proposed
that the dual memory system consisting of our
hippocampus and neocortex evolved, at least in part, in
order to overcome the problem of catastrophic
interference (see also French, 1997).

In what follows, however, we hope to show that,
rather unexpectedly, there is no catastrophic
interference in the implemented network of old
information from newly learned precise firing
sequence. We will begin by considering a now classic
experiment on human forgetting by Barnes &
Underwood (1959). We will then show that when this
experiment is simulated for synfire chains in a sparsely
distributed network of spiking neurons, the forgetting
curves observed during new learning are largely the
same as those observed in Barnes & Underwood.

Forgetting Caused by New Learning
Barnes & Underwood (1959) conducted a series of
experiments that measured the extent of retroactive
interference in human learning. We will consider two of
their experiments in this paper. In the first, subjects first
learned a set of paired associates (A-B) consisting of a
nonsense syllable and an adjective (e.g. dax paired with
regal, etc.) and then were asked to learn a new set of
paired associates (A-C) consisting of the same nonsense
syllables associated with a new set of adjectives (e.g.
dax paired with dirty, etc.). (This was called the A-B/A-
C paradigm.) The forgetting curve for the A-B associate
pairs produced by interference from the learning of the
new A-C pairs was relatively gradual (Figure 1a).

In a second experiment, participants first learned a
list of paired associates A-B, as above. Then they were
asked to learn a series of paired associate where the
second word was very semantically close to the original
I word in the A-B pairs. They called this paradigm the
A-B/A-B′  paradigm. See Figure 1b for the results of
this second experiment.
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Figure 1, a: Gradual forgetting of previously learned information in Barnes & Underwood’s (1959) A-B/A-C.
b: Results of the same experiment when the C list closely resembles the original B list (A-B/A-B′ paradigm).
c: McCloskey & Cohen’s (1989) results showing the network’s catastrophic forgetting A-B/A-C paradigm.



When connectionist networks began to become
widely used as models of human memory, McCloskey
& Cohen (1989) used the Barnes & Underwood A-B/A-
C paradigm to test forgetting in these networks. It came
as a considerable surprise to most researchers in the
field that, at least under certain circumstances,
McCloskey & Cohen were able to show that forgetting
in a standard backpropagation network was anything
but gradual. In one set of experiments, for example, a
standard backpropagation network thoroughly learned a
set of “one’s addition facts” (i.e., the 17 sums 1+1
through 9+1 and 1+2 through 1+9). Then the network
learned the 17 “two’s addition facts” (i.e., 2+1 through
2+9 and 1+2 through 9+2). Recall performance on the
originally learned one’s facts plummeted as soon as the
network began learning the new two’s addition facts.
Within 1-5 two’s learning trials, the number of correct
responses on the one’s facts had dropped from 100% to
20%. In five more learning trials, the one’s knowledge
was at 1%, by 15 trials, no correct answers from the
previous one’s problems could be produced by the
network. The network had “catastrophically” forgotten
its one’s sums. (See Figure 1c).

Networks of Spiking Neurons
In a network of spiking neurons (Maass & Bishop,
1999), nodes can be in two different states: they can fire
(on), or they can be at rest (off). A node fires at a
precise moment and transmits activation to other
connected nodes with some time course. When a node
activation or potential Vi

t( )  reaches a threshold, it emits
a spike. After firing, the potential is reset to some
resting value Vr. Inputs increase the node potential, but
some part of the node potential is lost at each time step.
Spiking neuron models, and in particular, INFERNET,
the network discussed here, use a quite realistic post
synaptic potential (PSP) function.

INFERNET is not a fully connected network; its
structure is organized by clusters of nodes which
constitute subnets. Each subnet is fully connected.
From each node of a subnet there is a connection to
every other node within that subnet. Some subnet nodes
have connections to external subnet nodes. This not
only reduces the computational demands of the
program, but also better corresponds to the actual
organization of the brain.

Two variables affect each connection: weight and
delay. Each weight corresponds to the synaptic strength
between a presynaptic and postsynaptic cell. The
weight between a presynaptic node j and a postsynaptic
node i is designated by wij. Noise is added to this value
and the resulting noisy connection is denoted by ŵij .

The delay d of a connection determines when the effect
of the presynaptic node firing will be maximum on the
postsynaptic node. There is also a noise factor on the
delay. This delay corresponds to the axonal, synaptic

and dendritic delays of real neurons.
A signal, whether excitatory or inhibitory, will be

affected by a leakage factor. When the signal has
reached its maximum, at each following step of 1 ms,
the signal will be divided by 2. Delays and leakage
factors define the Post Synaptic Potential function
ε ij x( ) :

  
εij xx x( ) = 1
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and x is the difference between the time t , the time of
the presynaptic node firing, and the noisy delay on the
connection: x = t - tj

(f) - d.
When a node potential Vi reaches a threshold θ, it

emits a spike. Thereafter, the potential is reset to its
resting value. After emitting a spike, a node enters a
refractory period. This corresponds to the membrane
resistance of real neurons which increases after a spike.
In INFERNET, the refractory state of node i depends
only on the last spike of the node i: ti

(f). A value
dependent on the refractory state is subtracted from the
node state value Vi. This value is denoted by ηi u( ) ,
where u is the difference between the current time t and
the time of the last spike of node i: u = t – ti

(f), and
where a and b are constants
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Variables affecting the potential of a node have now
been defined. Equation (3) express how Vi

t( )  i s
calculated at each time step.
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Node i fires when its potential Vi(t) reaches the
threshold Θ. This potential is affected by connection
weights ŵij  coming from each presynaptic node j. The
set of presynaptic connections to node i is given by

Γi j j is presynaptic to i= { } . Fj is the set of all firing
times of presynaptic nodes j : tj

(f). Noisy connection
weights linking j node to i node are ŵij .

Learning

Long term potentiation (LTP) and depression (LTD) are
the basic mechanisms of long-lasting modifications of
synaptic efficiency. Hebb (1949) postulated that when
presynaptic activity coincides with postsynaptic
activity, the connection between both neurons is
strengthened. According to recent experiments, the
modification of synaptic efficiency depends on precise
timing of afferent signals (neurotransmitters binding to



receptors) and the postsynaptic neuron spike. LTP
seems to require that postsynaptic action potential be
simultaneous or subsequent to postsynaptic currents
(Markram et al., 1997; Zhang et al., 1998). In short, when
the signal from the presynaptic neuron firing arrives
before, or during the spike of postsynaptic neuron, the
synapse is strengthened (LTP). When the signal from
the presynaptic neuron arrives after the spike of
postsynaptic neuron, the synapse is depressed (LTD).

In the present model, the plasticity of a synapse wij is
a function of three parameters: the firing time of the
presynaptic neuron: tj

(f), the transmission delay between
this firing and its effect on the postsynaptic neuron (dij),
and the firing time of postsynaptic neuron ti

(f). Learning
in INFERNET consists of modifying the weights of
connections between nodes wij by a value ∆wij (weights
are all short integers from -32767 to 32767, which
explains why the weight change values run from –1024
to 1024). The Hebbian learning function used is shown
in Figure 2. This function follows empirical studies
(Markram et al., 1997; Zhang et al., 1998). Similar
functions have been used in various simulations by
others (Levy & Horn, 1999; Munro & Hernandez, 1999).
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The learning algorithm attempts to reproduce the
temporal relation between two successive inputs. This
is particularly difficult because two successive inputs
can be separated by several tenths of a second and a
single connection cannot alone be responsible for such
long delays. A long chain of successive pools of node
firings is therefore required. This problem is illustrated
in Figure 3. The problem is linking nodes a and a′ that
fire at time 0 with node g firing at time 49. In the
learning phase, only nodes a and a′  and g, 49 ms later,
are externally stimulated. The system has to find a
chain of node-firings that makes the target node g fire at
time 49 when the probe nodes a and a′  fire at time 0.
The levels shown in Figure 3 are defined by the pools
of firing nodes that separate the nodes firing in response
to the input probe and the nodes responding to the
target. Note that when simultaneous input from enough
afferent neurons does not occur, the node will not fire.
There is therefore a phenomenon of selection of only
those nodes that have fired due to simultaneous inputs.

This requires a large fan out of connections at all levels
between the probe nodes and the target nodes.

The refractory state indicates when a particular node
fired. We also know the delay of signal propagation
from a presynaptic node to a postsynaptic node. From
these two values we can, therefore, detect which
synapse can contribute to a node firing at the right
moment. In Figure 3, one can detect which nodes
contribute to the firing of node g — i.e., e and f, whose
signals arrive at g virtually simultaneously. If f fired 9
ms before g , and e  fired 11 ms. before g , their
respective connections will be strengthened. Similarly,
one can also determine which nodes contributed to the
firing of f (i.e., d and d′), if d fired 7 ms before f, their
connection  will be strengthened (to a  somewhat  lesser
extent because we are farther down the chain). This
chaining rule acts as if a signal was going backwards
from the target node to the probe nodes, losing a bit of
its strength at each step. In order to reduce
combinatorial explosion, only the n best contributing
nodes are selected for the next level in this chaining
rule. Connections between nodes will be modified
according to equation (4):
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Figure 3: The chaining rule problem: Learning a path
of neural firings that makes node g fire exactly 49
ms after nodes a and a′.
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This rule is based on the history of node firing and
has neurobiological justification. For example,
Markram, et al. (1998) show that the state of a synapse is
indicative of its past activity. Moreover, empirical
studies (Engert & Bonhoeffer, 1997) show that LTP also
propagates from the originating synapse to neighboring
synapses, lending further plausibility to the present
chaining rule. In addition, each connection has a small
decay factor (of –10 by epoch).

The learning algorithm is triggered only when
external input is presented. We can imagine that



external input provides a strong signal that triggers the
chaining rule. Note that Hebbian learning does not
seem to be dependent on this kind of signal and affects
probably all synapses downstream from an action
potential. Here, it is the target input that is the signal to
launch the chaining rule. The objective is to link the
probe nodes’ firing to the target nodes’ firing and to
avoid reinforcing other irrelevant firings.

Simulation 1
In general, motor forgetting occurs more slowly than
cognitive forgetting (Globerson, Nahumi, Ellis, 1998).
By testing the present synfire chain algorithm for
cognitive forgetting,, we reasoned that if catastrophic
interference disappeared for this paradigm, the same
algorithm would eliminate it for precise motor learning.

The following simulation is based on the original
AB-AC paradigm used in Barnes & Underwood (1959).
As in the original experiment, we created a list of “non-
words” (A) and two associated lists of “words” (B and
C). Each B and C word was coded over 6 nodes (out of
800 possible nodes) and each “non-word” A was coded
over 16 nodes. Although the selection of nodes was
made randomly, we ensured that there was very little
overlap among the items in the A-list and among the
items in the B-list. All lists consisted of eight items.

Each temporal firing sequence consisted of 16 nodes
firing at time 0, corresponding to a presentation of a
non-word from list A in the Barnes & Underwood
experiments. Six nodes fired at time 60, triggered by
the associated word from the B wordlist.

Once the network had learned to associate the items
in list A with those in list B, the network then had to
associate the node-firings associated with the items in
the A-list with those of the C-list. As in Barnes &
Underwood, we kept the similarity very low between
the corresponding words in the B and C lists. This
meant that very few nodes overlapped in the encoding
of the corresponding words from the two lists. As the
network learned the new set of associations, we tracked
how fast new learning was taking place (i.e., how close
the output of the network was to the desired word in
List C) and, at the same, time, how far the output was
from the originally learned word in List B.
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Figure 4: INFERNET performing AB-AC learning.

The results, based on 20 runs of the program, are
shown in Figure 4. The Y axis indicates the proportion

of correct node firings, i.e. the number of B and C
node-firings within a ±2ms window divided by the total
number of nodes in B and C words. It is clear that,
unlike the catastrophic interference observed in
standard backpropagation networks (see Figure 1c), this
sparsely-distributed network of spiking neurons can
learn the second set of associations without
catastrophically forgetting the previously learned list.
These results are strikingly similar to those of Barnes &
Underwood (Figure 1a).

Simulation 2
All of the model parameters for this simulation were
identical to those of the preceding simulation, with the
exception that wordlist C was replaced by a wordlist B′.
All words in the B′  List were very similar to the
corresponding words in the B list. Of the 6 nodes used
by the representation of each B′ word, 4 of them were
shared by the corresponding word in the B List.
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Figure 5: INFERNET performing AB-AB′ learning.

The results, based on 20 runs of the program, are
shown in Figure 5. Again, this simulation closely
reproduced the experimental results of Barnes &
Underwood’s second experiment (see Figure 1b). The
results indicate the second associations are learned
more quickly and the first associations are almost not
forgotten, as for humans.

Conclusions
Human learning involves relating two signals separated
in time, or linking a signal, an action and a subsequent
effect. On occasion, the precise timing of these signals
is of critical importance. A millisecond inaccuracy can
mean that the spear thrown by the hunter will miss its
target, that the gymnast will miss her landing, etc.
Events may often be separated in time, but nonetheless,
humans can link them, if necessary, with extraordinary
accuracy, thereby allowing them to correctly perform a
particular action at precisely the right moment. We
have explored one major hypotheses concerning how
the brain might achieve this — namely, synfire chains.

Clearly people are not born with encodings of this
timing information. Hunters learn to throw projectiles
accurately, gymnasts learn to land correctly. Precise
temporal firing sequences must be learnable and permit
the linking of two events with extreme precision.



A learning algorithm based on a Hebbian learning
rule has been presented in this paper. We have briefly
explored the ability of a sparsely-distributed network of
spiking neurons, INFERNET, to learn synfire chains
and, most importantly, we studied forgetting in this
network of these chains. Unlike many current
connectionist networks, we found that the forgetting of
synfire chains is not subject to catastrophic interference,
but rather, closely resembles the gradual forgetting
curves exhibited in Barnes & Underwood’s (1959)
paper on human forgetting. This is due to the
sparseness of the number of paths (compared to the
very large number of possible paths) from probe to
target created by the learning algorithm. We hope to
have demonstrated the importance of synfire chains for
human cognition and to have shown an implementation
in a network of spiking neurons. Finally, and crucially,
our simulations indicate that synfire chains, so
necessary for precision actions in the real world, may
not be affected by catastrophic forgetting.
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