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Abstract
I argue against a widespread assumption of many
current models of cognition — namely, that the
process of creating representations of reality can be
separated from the process of manipulating these
representations.  I hope to show that any attempt to
isolate these two processes will inevitably lead to
programs that are either basically guaranteed to
succeed ahead of time due to the (usually carefully
hand-crafted) representations given to the program or
that that would experience combinatorial explosion if
they were scaled up.  I suggest that the way out of this
dilemma is a process of incremental representational
refinement achieved by means of a continual
interaction between the representation of the situation
at hand and the processing that will make use of that
representation.

Introduction

The tradition of separating representation and
processing dates from the earliest attempts to model
cognition on a computer.  The notion that the world
could be represented by means of a vast set of
symbols designating the objects of which the world is
composed and rules with which to manipulate those
symbols goes back even further, at least to the work
of Frege and Russell (see Frege (1952) and Russell
(1924)).  This view has been called Objectivism by
George Lakoff (Lakoff, 1987) who characterized it as
follows: “On the objectivist view, reality comes
complete with a unique correct, complete structure in
terms of entities, properties, and relations.”  The
application of this principle to the modeling of
cognition bears a name: the Physical Symbol System
Hypothesis (hereafter, PSSH; Newell & Simon,
1976).  This view, one that served as the cornerstone
of artificial intelligence for over two decades, posits
that thinking occurs through the manipulation of
representations composed of atomic symbolic
primitives.  Implicit in this view, in practice if not
necessarily in theory, is that the creation of these is
separate from their subsequent manipulation.

Especially since Rumelhart & McClelland (1986),
the PSSH view of cognition has come under attack by

connectionists as being inadequate to produce the
full range of cognitive phenomena.  However, in
many connectionist models the input vectors
presented to the network consist of a set of present-
or-absent features (i.e., a 1 or 0 for each input node
representing a particular feature) for the patterns to
be processed.  The network then processes a
particular set of inputs corresponding to the set of
features describing each pattern.  But where does this
choice of input features come from in the first place?
The tacit assumption is that they can be created
elsewhere and then processed by the network.
Again, initial representation and processing are
separate.

Context-independent Representations
and the Myth of an Independent

Representation Module

From the start it was, of course, realized that,
although computers were fast, they were not
infinitely fast and, as a result, the problems they
could solve had to be tractable.  And, while it was
clear that the way in which a problem was
represented could significantly affect processing time
(Amarel, 1968), tractability was largely perceived as
being about processing, not representation. In other
words, many early modelers in artificial intelligence
implicitly shared the logician’s faith in the existence
of universal representational languages and
techniques for representing any situation in a context
independent manner. This belief in context-
independent representation was necessary to justify
separating representation from processing.  If any
object or situation could, at least potentially, be
represented in a context-independent manner by a set
of necessary and sufficient properties, the separation
of representation and processing was appropriate and
it made sense to develop techniques for processing
representations without being concerned with the
actual production of the representations. The
research strategies that evolved respected this
representation–processing division of labor.
Considerable resources were devoted to developing
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heuristic techniques to reduce search times during
processing, while a comparable (but non-
overlapping) effort was spent attempting improving
representation languages.  If nothing else, the one
thing that almost everyone agreed on was that
representation had to precede processing.  I hope to
show that this view is fundamentally flawed.  I will
argue for the necessary simultaneity and interactivity
of the two processes.

In this article I will use the area of analogy-
making to argue for this interactive, simultaneous
view of processing and representation.

Representation and
the Recognition of “Sameness”

Successful models of human cognition must be able
to see one object (or situation or relation) as being
“the same as” some other (Hofstadter, 1979;
Mitchell, 1993; French, 1995).  For example,
whenever the thought “That’s like...” occurs to us,
we are perceiving one thing in terms of something
else.  New situations are understood in terms of
previously encountered ones, emphasis is placed on
particular aspects of one situation by likening it to
another, and so on.  This is, without question, one of
humans’ most fundamental means of making sense
of the world.  Central to this ability to perceive the
“sameness” in two different objects or situations is
the problem of representation.  We will consider the
problem of representation via the mechanism of
analogy-making.  The goal of the exercise that
follows is to attempt to demonstrate the
extraordinarily malleable nature of representations
that allows us to understand even the most
straightforward of utterances.

Consider any ordinary object — for example, a
credit card.  Whenever we make an analogy between
the credit card and something else, we focus on
certain features of the card and not others.  So, for
example, when we say, “A credit card is like
money,” we are focusing on its pecuniary aspect;  in
other words, the card, like money, can be used to
purchase things.  It is crucially important to observe
how the representation of “credit card” must change
with each statement in order to accommodate the
analogy.  The point is the context-dependent nature
of representations.  As I hope you will realize, no a
priori property list for “credit card,” short of all of
our life experience, could accommodate all possible
utterances of the form, “A credit card is like an X.”
Consider this short list of examples:

• “A credit card is a like a doorkey.”  In this case,
we are no longer focusing on it's money-
providing features — which, in fact, become
completely irrelevant — but rather on its very
thin shape, size, relative rigidity, and thickness.

• “A credit card is like a Braille book,”  Here, we are
focusing on the raised letters on the front of the
card.

• “A credit card is like a ruler.” Because you can
draw a straight line with it.

• “A credit card is like an autumn leaf.”  The focus
here is on wind resistance.  If you dropped both
from the Empire State Building, they would have
similar falling patterns (although the card would
no doubt fall faster).

• “A credit card is like a breeze.” Because you can
cool yourself off with it if you use it as a little fan.

• “A credit card is like a soup-can label.”  Both
contain encoded information that can be
automatically read by a machine (in one case,
from a magnetic strip; in the other, from a bar
code).

• “A credit card is like fingernails.”  Both produce
goosebumps in listeners who hear them scraped
across a blackboard.

• “A credit card is like a bat.”  Because you’ll never
know what it’s like to be either of them...

Perhaps it is becoming apparent that you can, with a
little imagination, explain why a credit card is like
absolutely anything. Even though your explanation
(i.e., the context you create)  may be stretched, it will
be understood.  Try it:  A credit card is like a rose.
A credit card is like a doormat.  A credit card is like
a horse race.  A credit card is like a banana peel.  A
credit card is like a switch-blade knife.  A credit card
is like the Spanish Inquisition.  The list is endless,
but you will always be able to transfer some facet of
your long-term memory representation of “credit
card” — a representation that, ultimately, consists of
everything in your life experience — to working
memory in order to be able to say why a credit card
is like some other object (French, 1995a; French,
1996).

While these examples may seem somewhat
humorous, the point they illustrate is a very serious
one — namely, that the features of any given
representation and the weights of those features are
highly context-dependent.  A representation that
would allow a credit card to be successfully
compared to money, a door key, Braille type, a
breeze, a switchblade knife, a banana peel and a soup
can label (or anything else you choose) has to be a
very flexible one indeed.  Could there actually be
such a context-independent representation?  In some
trivial sense, yes, the entire contents of long-term
memory.  But in this case, we are back to square one
and our separate representation module will have
achieved nothing.  The whole point of such a
separate representation module is lost if the best it
could ever do is to provide a processing module with
a representation that would include every possible
aspect of the situation under consideration.  The
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function of the representation module would be
shifted to the processing module because the latter
would then have to sift through the vast oversupply
of information in such a representation.  To
determine precisely which pieces of that information
were relevant would be tantamount to doing the job
that the representation module “should” have done.
It would involve filtering and organizing the
available data from the “big” representation in order
to focus on the information relevant to the situation
at hand.  And this, in a nutshell, is the problem of
representation all over again.  (For a detailed
discussion of this point, see Chalmers, French, &
Hofstadter, 1992.)

Programs whose success relies on
separating representation and processing

If  the concept of a “representation module” actually
made sense, then one would be methodologically
justified in concentrating on the question of task-
processing without paying particular attention to the
process of representation-building.  Hand-made
representations could be fed to this task-processor
“until such time as someone else developed an
appropriate representation module.”

But over the years this strategy has led to the
development of programs that, while they seem at
first blush to be very successful, turn out to be flawed
because either:

• their exclusive reliance on hand-tailored
representations virtually guarantees a
successful outcome, or

• if they did not rely on hand-tailored
representations, they would rapidly encounter
the brick wall of combinatorial explosion if
they were scaled up.

In addition, the representation-module myth is
unfortunately as much a part of cognitive modeling
today as it was two decades ago.  We will look at
four well-known programs and see how their success
has relied, in large measure, on hand-crafted
representations.  It should also become clear that, if
hand-made representations had not been used, all of
these programs would have failed.  I will briefly
consider a number of well-known programs that span
the last fifteen years:  BACON (Langley, 1979;
Langley et al. 1987), SME (Gentner, 1983;
Falkenhainer, Forbus, & Gentner, 1989), ACME
(Holyoak & Thagard, 1989), SIAM (Goldstone &
Medin, 1994) and, most recently, a similarity
program developed by Chater & Hahn (1996).

BACON

This program, the original version of which was
developed by Langley (1979), purports to discover

laws of physics, such as Ohm’s Law, Coulomb’s
Law, Kepler’s Laws of planetary motion, etc.  In
Langley et al (1987) we find the following claim:

 “...the program [BACON] requires only a few
minutes to recreate such major discoveries as
Kepler’s third law, Ohm’s law, the gas laws,
and Coulomb’s law.... Since BACON actually
makes the discoveries we are discussing, it must
carry out, at whatever level of detail is required,
all of the processes that are essential to a
successful search for the solution.” (p. 111)

But when we examine the details of the program
more carefully, we notice that the representational
input given to BACON is (p. 99): “...three
observational variables: a primary body [in this case,
the Sun], a satellite of that body [a planet], and the
time T at which these two objects are observed.  Two
dependent variables are used.  One of these is the
distance D between the primary body and the
satellite [and the other is the] angle A found by
using the fixed star and the planet as the two
endpoints and the primary body (the Sun) as the
pivot point.”  There are a total of five variables,
three independent and two dependent, some of
whose values are shown below.

Primary body Satellite T    D   A   
Sun Mercury 50 0.387 52.9
Sun Venus 60 0.724 49.0
Sun Earth 50 1.000 185.8

In Langley et al (1987), this table is labeled “First-
level data for the solar system” and it is based on
these data that BACON derives Kepler’s Third Law.
Now, Kepler was one of the leading mathematicians
of his day and it took him thirteen years to derive
this law.  It is hard to believe that if he had been
given only the above representation of the solar
system — the one, however, that BACON uses —
that it would have taken him so many years to fit the
data to the extremely simple relation that we now
call Kepler’s Third Law.  The difference between
what Kepler did and what BACON does is all about
the problem of representation.  Kepler, as opposed to
BACON, had to prune an enormous (and often
radically flawed) representation of the solar system
and the world, inherited from Antiquity and replete
with mythological features, Aristotelian philosophy,
and astrological nonsense — much of which Kepler
must have believed; he was, after all, the court
astrologer — before he could arrive at anything
close to the five-variable representation of the solar
system that was used by BACON.  To complicate
matters further, during Kepler’s time, before Galileo
and Newton, it was even far from clear algebraic
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expressions had any place in the description of
nature. Representing the problem was the hard part
of Kepler’s discovery; by comparison, the rest was a
piece of cake.   And yet, all of this is totally ignored
by BACON.  BACON, by not having to do the really
hard part of the problem, does not come close to the
authors’ claim that it was required to perform “all of
the processes that are essential to a successful search
for the solution.”

On the other hand, had BACON been given all of
Kepler’s knowledge and beliefs about the solar
system, combinatorial explosion would almost
certainly have prevented it from deriving anything at
all.

SME

This program (Gentner, 1983; Falkenhainer et al.,
1989) is an analogy-making program that discovers
mappings between two situations (called the base
situation and the target situation) based on their
underlying syntactic structure.  It maps objects and
relations between objects in the base situation to
their counterparts in the target situation and makes
inferences about the latter situation based on the
mappings found.  SME is provided with fixed
representations for both the base and target
situations.  According to its authors, SME was able
to discover a set of mappings between the Rutherford
atom and the Solar System (“nucleus” maps to
“Sun”; “electron” to “planet”; “gravity” maps to
“opposite-sign”; the predicate “revolves around” is
the same in both situations, etc.).  It is, however,
instructive to consider the representations of the
Solar System and the Rutherford Atom that were
given to SME (Figure 1).

SOLAR SYST EM

C AU S E

C AU S E

G R AV IT Y A TT RA C TS (sun, p lanet) G R EA TE R

M A SS (sun) M A SS (planet) M A SS(sun) M A SS(planet) G R EA TE R

TE M P ER A TU RE (sun) TE M P ER A TU RE (planet)

A ND R EV O LV E(sun, p lanet)

C AU S E

O PP O SIT E-S IG N A TT RA C TS (sun, p lanet)

C HA R G E(electron) C HA R G E (electron)

R EV O LV E(electron, nucleus)

G R EA TE R

M A SS(nucleus) M A SS (electron)

RUTHERF ORD ATO M

Figure 1.  The representations of the Solar System
and the Rutherford Atom given to SME.

The representations for both of these two concepts
are — with the single exception of the red herring
GREATER(Temperature(sun), Temperature(planet))
— carefully tailored to induce a set of structural

correspondences that will allow SME to “discover”
an analogy between the Rutherford atom and the
Solar system.  Consider what is left out of the
representations.  Nowhere in the representation of
the Solar system do we find anything about the size
of Jupiter, the coldness of Pluto, the polar ice caps of
Mars, the presence of vast oceans on Earth, the
existence of comets that return periodically (and
others that never do), the density of the Sun
compared to the density of Saturn, the presence of
the asteroid belt, the number of planets and their
moons, the incredibly salient fact (especially for us
humans) that there is life on the third planet from
the Sun, and so on, ad infinitum. Nor do we find any
a priori reason why these things should be
eliminated from the representation.  Ditto for the
Rutherford atom.  The “representation module” for
SME (i.e., the programmer) provided it with just the
right representations because he or she knew
precisely what task SME was going to perform.  It is
instructive to notice how the same object — the
Solar System — was represented when the the goal
was, in the present case, to find a mapping between
it and the Rutherford atom and, in the previous case
(BACON), to discover the laws of planetary motion.
The two representations have nothing whatsoever in
common.

A more recent version of this architecture,
MAC/FAC (Gentner & Forbus, 1991), recognizes
this difficulty and begins by producing a large
number of different representations (“Many are
called”: MAC) from which a small number are
chosen (“Few are chosen”: FAC) for processing by
SME.  But these representations are still produced
independent of the processing task.  The “good”
representations are still chosen independent of the
processing task in which they will be used.  This
means that the problem of a separate representation
module still exists, the only difference being that
MAC/FAC’s representation module draws from a
wider range of possible initial representations. The
fundamental problem of “represent first, process
later” remains unchanged. (For a more detailed
discussion of these difficulties, see French (1995b).)
Only once the content and structure of the
representation start to be automatically tailored to
the needs of the processing task by the processing
task will the system produce context-dependent
representations.  Developing representations in this
way will at least have a fighting chance to beat the
ultimate problem of combinatorial explosion.

ACME and SIAM

Holyoak and Thagard’s (1989) connectionist model
of analogy-making and a recent close cousin,
Goldstone & Medin’s SIAM (1994).  Both of these
programs start with fixed representations of a base
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and target situation.  A connectionist network is
created in which there is one object-to-object node
for every possible correspondence between an object
in the base situation and one in the target situation.
As the network settles, only the appropriate nodes
remain active, thus indicating the appropriate
correspondences making up an analogy between the
two situations.  Actually, though, what would be
needed is every correspondence between all possible
groups of objects in one situation with the groups of
objects in the other situation.  One example should
suffice to make this point.  Consider once again the
analogy between the Solar System and the
Rutherford Atom.  It would presumably be
reasonable in ACME or in SIAM to have a mapping
not only between “Jupiter” and “an electron” (i.e., a
one object-to-one object mapping), but also between
“Jupiter and its twelve moons” and “an electron”
(i.e., a 13-object-to-1-object mapping). What
context-free, a priori justification do we have for
allowing certain groupings and not others?  Clearly,
none.  So, we would have to include them all.  But
then a base representation consisting of 20 objects
and a target representation with 20 objects would
require a network not with 202 nodes, but rather with
at least (220-1)2 nodes, which is well over a trillion
nodes not a mere 400!  What is needed is a way of
building the representations of both base and target
situations interactively and concurrently with the
process of correspondence-building.  If we gradually
converge on the appropriate representations of the
two situations as the correspondences are being built
— with certain correspondences influencing further
representing of each situation and vice-versa — we
have a chance of escaping combinatorial explosion.
(See Hummel & Holyoak, (1996), however, for an
approach that makes a serious connectionist attempt
to dynamically integrate representation and
processing.)

 “Kolmogorov” similarity
In a final example, Chater & Hahn (1996) use a

Kolmogorov complexity measure to judge the
similarity between two situations.  The information
distance between two concepts is defined as the
number of instructions that must be followed to
transform one situation into the other.  The fewer
instructions, the smaller the information distance.
The degree of similarity between two situations is,
according to this approach, determined by their
information distance. Implicit in this approach is the
notion of an a priori representation of both
situations.  Consider once again the myriad possible
representations of “credit card.”  A credit card in the
hands of a person trying to open a door is, in that
context, much more similar to a doorkey than to a
banknote (it’s most common function).  Again, the

representations of two different objects or situations
is not a context-independent fact, which it would
have to be for this (otherwise very elegant)
Kolmogorov similarity technique to work as a real
measure of conceptual similarity.  I do not see how
this technique could be modified so that in the case
of the thief breaking into a house, it would indicate
that the credit card is more similar to a doorkey than
to a banknote; whereas in the case of paying for a
Christmas present, the same credit card would be
more similar to a banknote.

A “Gradual Convergence” |Approach
to Representation

I hope to have shown in the previous sections some
of the difficulties with the notion of a representation
module that is separate from processing.  Are we
then obliged to process only “full” representations of
every object or situation — a representation that
would have to include virtually everything that we
had ever stored in long-term memory — we
encounter?  This would not seem possible because of
size limitations on working-memory (hereafter,
WM), at least as this memory is normally construed
(Miller, 1956; Atkinson & Shiffrin, 1968; Waugh &
Norman, 1965; for a more recent review, see
Baddeley, 1986).  These limitations would not allow
WM to accommodate such unwieldy representations.
For this reason, long-term memory representations
must be pruned in such a way that they can be used
by working memory.

This would seem to strongly argue for an “gradual
convergence" approach to representation.  This
approach has been developed, in particular, in the
work of and Chalmers, French, & Hofstadter (1992),
Hofstadter (1984), Hofstadter & Mitchell (1991),
Mitchell (1993), and French (1995).  The following
succinct explanation of this process of gradual
representational convergence is from the Chalmers,
French & Hofstadter (1992).

Structures in working memory activate long-
term memory items, activation then spreads
from these items in long-term memory and
activates other related items.  Highly active
long-term memory items will then be considered
for participation in working memory.  In this
way, the activation in long-term memory
influences the contents of working memory.
When new structures are introduced into
working memory, they may combine with
structures already there, which would in turn
send activation back to long-term memory,
which would activate new long-term memory
items, activation would radiate out from these
items, and so on. In this way, contextually
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appropriate representations will gradually be
built up in working memory.

In this way, the representations in working
memory do not have to include every bit of
information that could possibly be associated
with a particular situation. They include only
contextually relevant information, this being
determined in large measure by the concept
activation levels in long-term memory. It is also
the fact that representation-building is largely
dependent on concept-activation levels in long-
term memory which keeps the process of
representing from becoming combinatorially
explosive.

These principles have been implemented in a number
of computer programs working in a variety of micro-
domains (Mitchell, 1993; French, 1995; Defays,
1995; McGraw & Hofstadter, 1996).  In these
programs, WM and LTM are presented as distinct,
although continually interacting, memory structures.
There is certainly a need to integrate these two
memory structures in a more direct way.  One
attempt along these lines has been produced by
Kokinov (1994).

Summary and Conclusion

I hope to have shown some of the difficulties
associated with any attempt to isolate representation
from the processing, an almost ubiquitous practice in
attempting to model human cognition on a computer.
I have indicated a number of well-known programs
whose operation relies on this separation.  Finally, in
order to avoid representations that consist of all of
long-term memory and that are, consequently,
unusable in working memory, I have suggested that a
process of continual interaction between
representation and processing is necessary.

In closing, I ask you to consider the most ordinary
of utterances: “After the Christmas holidays my
bathroom scale is my worst enemy,”  We all know
exactly what this sentence means.  But what a priori
representations of “bathroom scale” and “worst
enemy” could allow us to understand this simple
expression?  It would have to include knowledge
about the tradition of big meals and excessive eating
at Christmas, about people’s concerns about being
overweight, about irony, as well as subtle and
complex knowledge about battles, enemies and
competition in order to make sense of the idea of a
hostile encounter between you and your bathroom
scale, etc.  The logic of separating representation and
processing would imply that all of this information
would have to be included in context-independent
representations of “bathroom scale” and “worst
enemy”.  With simple sentences like these (and
many, many others), one begins to understand the

necessity for context-dependent, process-interactive
representations.

Now, finally, we come full circle to the title of this
paper.  When are coffee cups like old elephants?
What set of a priori representations could possibly
bring these two concepts into alignment?  Consider
the following:  When I am working at home, I
frequently go down to the kitchen and return to my
office with a cup of coffee.  But I often forget to take
my dirty coffee cups back downstairs.  As a result,
over a period of a week or so most of the cups in the
house gradually end up in my office.  One day my
wife, hunting for a coffee cup, observed, “All of our
coffee cups seem to have migrated to your office.”
Somehow this reminded me of the fact that old
elephants in Tarzan movies always go off to die in a
secret elephants’ graveyard, and I replied, “Just like
old elephants in a Tarzan movie.”

Representations, if we are ever to achieve true
machine intelligence, must be that malleable, so
malleable that they can, in an instant, bring together
bathroom scales and enemies, and even old elephants
and coffee cups.
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