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Abstract 
 

Connectionist modeling has begun to have an impact on research in social 
cognition. PDP models have been used to model a broad range of social 
psychological topics such as person perception, illusory correlations, cognitive 
dissonance, social categorization and stereotypes. Smith and DeCoster [28] 
recently proposed a recurrent connectionist model of person perception and 
stereotyping that accounts for a number of phenomena usually seen as 
contradictory or difficult to integrate into a single coherent conceptual framework. 
While their model is based on clearly defined and potentially far-reaching 
theoretical principles, it nonetheless suffers from certain shortcomings, among 
them, the use of misleading dependent measures and the incapacity of the network 
to develop its own internal representations. We propose an alternative 
connectionist model - an autoencoder - to overcome these limitations. In particular, 
the development of stereotypes within the context of this model will be discussed. 

 

1. Introduction 
 
Until recently, connectionist models have had only a marginal impact on research in 
social psychology. However, in the last five years, researchers have tried to account 
for certain well established phenomena in the social cognitive literature using 
connectionist models. Among these phenomena are illusory correlation [7], 
cognitive dissonance [26, 30], person perception [28], impression formation [16, 17], 
and causal attribution [22, 29]. Read & Miller [23] brought together these disparate 
models in a review book dedicated to connectionist models in social psychology. 
Like Smith [27], we believe that connectionist modeling in social psychology may 
lead to a major theoretical integration of our understanding of social behavior and 
cognition. After a long period of conflict between the ‘social cognitive’ and the 
‘social identity’ approaches, a connectionist approach to certain areas of social 
psychology could shed light on our understanding of stereotyping, prejudice, 
discrimination and other intergroup processes. 

Smith & DeCoster [28] recently proposed what is, to our knowledge, the only 
connectionist model of social perception and stereotyping. They use a recurrent 
network based on the McClelland & Rumelhart’s model of learning and memory 
[20]. They use a nonlinear activation update, bounded real-valued activations, and 
the delta learning rule. While their model is based on clearly defined and potentially 
far-reaching theoretical principles, it nonetheless suffers from a number of  
shortcomings and has, we believe, several methodological problems. The most 



important limitation of their model is that it suffers from a linearity constraint in 
pattern learning: their model can learn a set of patterns only if the external input to 
each unit can be predicted perfectly by a linear combination of the activations of all 
other units, across the entire set of patterns. Smith & DeCoster suggest adding a 
hidden layer, something that is done in the model we propose here. There are a 
number of secondary problems with their model. 

First, to account for the fact that people are able to generalize from multiple 
presentations of the same pattern, they train the network on a single pattern which is 
repeated 200 times (supposedly a frequently encountered individual), plus 1000 
patterns randomly picked from a normal distribution (these are supposed to be the 
general background knowledge encountered by the social perceiver). To test a 
potential generalization, they probe the network with a corrupted version of the 
repeated exemplar. This task is unrealistic because people are exposed to many 
frequently encountered individuals. The problem with learning a single, often 
repeated exemplar is that this produces a very large basin of attraction for this 
pattern. Any starting pattern would likely reach the only available attractor state. 

Second, we have had difficulty in reproducing their results. Using the equations 
they used, it would appear that the network has trouble finding a stable state in the 
activation update process. Formal analyses have shown that recurrent networks, in 
spite of their interesting dynamical properties, can also exhibit chaotic or oscillatory 
trajectories and cycle attractors [15]. This raises the question of when to modify the 
weights if a stable activation state has not been reached. 

In this paper, we show that a simple multi-layer connectionist model - an 
autoencoder - can account for many robust phenomena in the social psychological 
literature. The rationale of our simulations was to develop a single model capable of 
qualitatively accounting for a wide range of well-known phenomena rather than 
fine-tuning one model to precisely reproduce the results of a single experiment. 
 

2. Target Phenomena for these Simulations 
 
We will test our model on a number of uncontroversial data patterns that can be 
found in the major handbooks and reviews of social cognition [9, 11], namely: 
 
�� Exemplar-based inference: Numerous studies [1, 18] have shown that people 

can learn particular properties of specific individuals (friends, family members, 
etc). With this knowledge, people can make inferences, often unconsciously, 
about unobserved traits or characteristics of a newly encountered individual. 

�� Group-based stereotyping: People can acquire stereotypes through social 
learning (gossip, media) and direct exposure to group members. They extract 
regularities in the traits of the people encountered and can apply this knowledge 
to draw inferences about either unobserved or perceived features (perceptual 
change in order to confirm the stereotype) of a new individual [14]. 

�� Concurrent exemplar-based inference and group-based stereotyping: Our intent 
here is to demonstrate that a simple autoassociative memory can account for 
these two ways of processing that are generally difficult to integrate into a 
single framework. Traditional models [3, 8] have trouble integrating these two 
processes without resorting to a number of ad hoc hypotheses. 



�� Development and formation of stereotypes: We show that our model can 
account for many aspects of the development and formation of stereotypical 
knowledge without recourse to other factors, such as motivation, attention, 
cognitive load or norms. The use of stereotypical knowledge is seen as an 
increasing function of experience. Therefore, in our model, stereotyping can be 
conceived as a functional property in order to reduce the complexity of the 
social environment.  

 
Only exemplar-based inference and group-based stereotyping were target 

phenomena in Smith & DeCoster’s simulations. Most importantly, this model 
provides a unified theoretical framework for a fairly large number of phenomena 
related to stereotyping and social perception and can make novel predictions that can 
be tested in a traditional experimental setting. 
 

3. Specific Aspects of the Model 
 
Because of humans’ necessary interactions with their social environment, the human 
brain has evolved in a such a way that social perceivers are able to cope with the 
intrinsic complexity of the social world. From this interaction and evolution have 
emerged, among other cognitive abilities, efficient face recognition, cheater 
detection, and one’s own ingroup recognition. These abilities certainly provided an 
adaptive advantage during our evolutionary past. As a result, human brains are now 
able to recall a large number of individuals and events that allow them to deal with 
complex social situations. One of the most effective means of achieving this is to 
segregate the world into categories. Even if social and natural categories do not 
share the same properties, it is likely that the cognitive mechanisms by which we 
acquire them are similar. In both cases, categories could be extracted by a perceiver 
through statistical learning of the regularities in the world. Clearly, this is not an 
adequate explanation of all human learning but a large part of what a human being 
learns is probably implicit and requires no explicit rules or teachers. 

In order to model certain cognitive social phenomena, particularly those involved 
in preconscious perceptual stages of conceptual interpretation, we chose to use an 
autoencoder whose task is to autoassociate a pattern via a hidden layer. This layer 
acts as a bottleneck and yields compressed representations of patterns. This network 
can learn without rules by observing exemplars, can automatically generalize, and 
can store precise information with a high degree of accuracy. Furthermore, 
autoencoders, unlike recurrent networks, do not suffer from the intrinsic problem of 
non-convergence to an attractor state. They also have a hidden layer which allows 
the network to overcome the problem of linear separability of the patterns to be 
learned. This hidden layer allows the network to develop its own internal 
representations, which it is certainly an essential feature of the human memory. 

The results below are based on the performance of a 10-8-10 feedforward 
network. Activation values were either –1, 0, or +1. The rationale behind the coding 
is as follows: +1 could be conceived as the presence of an attribute or a trait, –1 as 
the absence of a trait, 0 was used to mean “impossible to determine whether the trait 
is present or not” (i.e. 0 is a “don’t know” state. This coding fits the logic of social 



interactions because it is frequently impossible to say if a person has a trait or not. 
Each pattern presented to the network represents an individual that a social perceiver 
could encounter. We never explicitly present a group in itself. The basic rationale of 
the simulations depicted here was inspired by a study by Mareschal & French [19] 
on early infant categorization. We use the standard backpropagation learning rule 
with momentum. The learning rate was set to 0.0001 and the momentum to 0.9. A 
Fahlman correction of 0.1 was applied. Networks were trained for a maximum of 
100 epochs or until a error criterion of 0.2 for all outputs for all patterns was 
reached. The particular details of each simulation are given below. 
 

4. Simulations 
 
4.1 Simulation 1: Exemplar-Based Influence 
 
The goal of this simulation is to see if the network is able to store 4 different 
frequently encountered patterns. Moreover, we want to assess the network’s ability 
to generalize to novel exemplars. Although this property is a relatively well known 
feature of this class of networks, we performed this simulation in order to reproduce 
the Smith & DeCoster’s simulations scheme as closely as possible.  

 
Method & Results 
 
The network was always given the same four bit-strings of length 10. However, to 
introduce variability, any bit could be randomly set to zero (i.e. “don’t know” state) 
with a probability of 0.1. Each “participant” saw an equal number of each bit-string. 
We simulated 10 participants. The order of presentation of these 4 exemplars was 
randomized for each run. 

We tested the network’s memory for these exemplars by presenting two kinds of 
patterns. First, we probed the network with each “pure” exemplar (i.e. no 0’s) to see 
if it learned to autoassociate the exemplar. Second, we probed the network with 
degraded versions of each exemplar to see how it fills in the blanks. For each 
exemplar and for each run, we present 10 “2-bit”, 10 “3-bit”, and 10 “4-bit” 
corrupted versions (i.e., 2, 3, 4 bits were randomly set to 0). For each of these two 
procedures, we computed an error measure consisting of the discrepancy between 
the actual output and the pure exemplar. When we probe with the pure exemplar, we 
expect to see a decrease of the error compared to the error level before training. 
Moreover, when we probe with new patterns, close to the original patterns, we 
expect a slight increase in error but significantly below the initial error for unlearned 
patterns. In other words, well learned exemplar representations influence the way 
new patterns, close to the originally learned patterns, are perceived. 

The network performs as expected. Figure 1 shows the mean initial error score, 
the mean error score (after training) for the pure exemplars, and the mean error score 
(after training) for the approximate versions. The error is averaged over the 4 
exemplars. 
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Figure 1: Mean error scores (Exemplar-based inference) 

After learning, error is significantly lower, suggesting that the network has 
developed a reliable internal representation of the 4 exemplars. The generalization 
error rises slightly but stays well below the initial error, suggesting that the 
perception of similar exemplars is deeply influenced by the frequently encountered 
exemplars. 
 
4.2 Simulation 2: Group-Based Influence 
 
A stereotype is defined as a cognitive structure containing the social perceiver’s 
knowledge, beliefs, and expectations about a group, learned through direct 
experience with individual group members and through social learning. Therefore, 
stereotypes affect inferences about newly encountered individuals [14] and these 
effects are often unintended and unconscious [5, 12]. Associations between a social 
category and a trait are most likely formed when they co-occur frequently and 
without too much variability [6]. 
 
Method & Results 
 
We intended to show that the network is able to extract regularities in the presented 
patterns and can develop a prototypical representation of a group. Moreover, the 
network should be able to use this emergent knowledge to make inferences about 
new group members (i.e. patterns sharing some features with the prototypical group 
membership). 

Instead of presenting the same bit-strings to the network, we presented variations 
of a prototype, ensuring that the network never encountered the prototypical group 
member. We continue to use the “don’t know” state with a probability of 0.1. We 
simulate 2 groups, each consisting of 50 patterns. We first defined two bit-strings 
that will serve as stereotypes for the test phase. These two stereotypes were designed 
as follows: Five of the ten units were chosen as the “defining” features of the group 
because they are assumed to co-occur frequently. To introduce more variability, the 
probability that one of these units had the stereotypical feature was arbitrarily set to 
0.8. The 5 other units were picked at random from randomly assigned values of 1 
and –1. We simulated 10 participants. The order of presentation of the 100 patterns 
was randomized for each run. 



We tested the network with the never-encountered stereotype to see if the 
network had extracted it from the repeated presentation of members. Second, we 
probed the network with incomplete versions of the stereotype to see how the 
network would fill in the blanks. For instance, does providing two stereotypical 
features allow the network to infer other stereotypical attributes ? For each 
stereotype and for each run, we presented 10 “1-bit”, 10 “2-bit”, and 10 “3-bit” 
corrupted versions (i.e., 1, 2, 3 bits set to 0). For each of these two procedures, we 
computed an error measure consisting of the discrepancy between the actual outputs 
and the desired outputs for the 5 “stereotypical” units. 

Figure 2 shows the mean initial error score, the mean error score (after training) 
for the stereotype, and the mean error score (after training) for the previously unseen 
group members. Errors were averaged over both stereotypes. 
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Figure 2: Mean error scores (group-based stereotyping) 

After learning, the error is lower suggesting that the network has extracted 
regularities from the environment and has developed stereotypical knowledge. The 
generalization error is slightly higher but remains well below the initial error, 
suggesting that the network uses its newly acquired knowledge to infer stereotypical 
characteristics for new group members. 
 
4.3 Simulation 3: Concurrent Exemplar- and Group-Based Influences 
 
To investigate if the results of the two previous simulations were not artifacts, we 
test the network to see if it can exhibit both exemplar- and group-based processes 
simultaneously. A real social perceiver can simultaneously have a stereotype of a 
specific group and an accurate representation of exemplars which could be subtyped. 
The perception of newly presented individuals could be influenced either by the 
exemplar’s representation or by the stereotypical one. Does the present network 
have these properties ? 

 
Method & Results 
 
We build a set of patterns consisting of a single exemplar presented 50 times and 50 
group members presented each once. The exact procedure was the same as in the 
previous simulations. We simulate 10 participants. After training, we probe the 
network both with patterns close to the exemplar or with “new group member” 



patterns. We expect that, in both cases, errors will decrease compared to their initial 
state. 

After training, the network exhibits both exemplar and group-based learning. 
Depending on the “person” (i.e., new pattern) encountered, the network is 
influenced both by frequently encountered  exemplars and by emergent stereotypical 
patterns. Figure 3 shows the decrease in error, both for the “close-exemplar” and for 
the “stereotyped members” patterns. 
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Figure 3: Mean error scores (concurrent exemplar-based and group-based stereotyping) 

 
4.4 Simulation 4: Development of Stereotypical Knowledge 
 
One important aspect of this model is that it can account for the development of 
mental representations of stereotypes. Sherman [24] noted that one of the most 
important factors influencing perceivers’ reliance on exemplars or abstracted 
prototypes is the amount of experience perceivers have with the target to be judged. 
It is assumed that early encounters with a target will be of disproportionate 
importance because only a limited number of exemplars have been encountered 
from which to extract useful abstract knowledge. But as the number of encountered 
exemplars increases, a stereotypical representation can emerge, that then serves as 
the basis for subsequent inferences [25]. In this model, this property arises as a 
natural consequence of interacting with the complexity of the environment. 

 
Method & Results 
 
We took one of the stereotypes used in the second simulation and created a single 
exemplar from it. In the first phase, we used the same design as in the first 
simulation but with only this single exemplar instead of four. We then tested the 
network by computing two error measures:  one with respect to the exemplar and the 
second with respect to the stereotype. The exemplar error was low and the 
stereotype error high. (See Figure 4). In the second phase, we presented the network 



with a second set of patterns, which consisted of group members.  This composition 
reflects the particular experimental design used by Sherman [24]. After this second 
phase, the same error measures were computed as before. We observe an increase in 
the exemplar error and a simultaneous decrease in the group-based error. These 
results are consistent with Sherman [24]. All  results were averaged over ten runs 
and are shown in Figure 4.  
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Figure 4: Mean error scores (Development of stereotypes) 

 

5. Discussion 
 
Compared to Smith & DeCoster’s model, the autoencoder model is more powerful 
due to the presence of a hidden layer. This main improvement could be further 
tested in future studies (e.g. analysis of internal representations). In addition, 
autoencoders extract eigenvectors and are very close to PCA extractors. But they are 
more than PCA tools, insofar as they allow for learning, development and dynamical 
extrapolation of representations. However, although this model exhibits some 
interesting properties and can reproduce a number of important effects, it suffers 
from certain limitations. One of the most appealing properties of connectionist 
networks is their ability to do pattern completion, a property that is important in the 
simulations reported here. But the down side of this property is that the network will 
always fill in missing information whereas humans sometimes do not. This is 
certainly a drawback for current connectionist models of person perception. Sparse 
coding might be able to overcome this problem by producing a special “no 
recognition” state [4]. A second limitation of the model described here is 
catastrophic interference. Although learning is conceived somewhat differently in 
our simulations than in traditional cognitive psychology paradigms, the fact that 
catastrophic forgetting [21] can occur in these models is a real shortcoming for any 
model of human memory and cognition. This model, as any standard feedforward or 
Hopfield network models suffers from the “stability-plasticity” dilemma [13]. 
However, humans certainly do not suffer from catastrophic interference, especially 
with stereotypes. In fact, a stereotype is often particularly resistant to change. 
Modular computational architectures have been developed based on the brain’s 



hippocampal-neocortical division of labor to overcome this problem [2, 10]. Finally, 
by using an autoencoder, we lose the dynamic properties of an attractor network 
and, in particular, we lose the ability to study the evolution of attitudes or impression 
formation over time. Nevertheless we could undoubtedly overcome this limitation 
by adding recurrent links to the present model. 

 

6. Conclusion 
 
We have presented a simple model that captures certain properties of the early 
unconscious stages of social perception and stereotyping. The autoencoder, like 
humans, develops a relatively accurate representation based on single exemplars that 
can be automatically used to make inferences on newly encountered exemplars 
similar to those already encountered. Moreover, the network is able to reproduce 
these effects even in presence of variable inputs. This means that a stereotypical 
representation of a group can be extracted from repeated presentations of different 
members of the group. We do not claim that this is the only mechanism for 
stereotype formation and stereotyping but this statistical interpretation can arguably 
account for the early stages of these complex processes. We also show that 
exemplar-based inference and group-based stereotyping can be exhibited by a single 
autoencoder simulating the way humans store this type of knowledge. This network 
also offers a potential model of the development of stereotypical representations. 
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