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Abstract 

Young infants exhibit intriguing asymmetries in the exclusivity of categories formed on the 
basis of visually presented stimuli. For instance, infants who have previously seen a series of 
cats show a surge of interest when looking at dogs, this being interpreted as dogs being 
perceived as novel. On the other hand, infants previously exposed to dogs do not exhibit such 
an increased interest for cats. Recently, researchers have used simple autoencoders to account 
for these effects. Their hypothesis was that the asymmetry effect is caused by the smaller 
variances of cats’ features and an inclusion of the values of the cats’ features in the range of 
dogs’ values. They predicted, and obtained, a reversal of asymmetry by reversing dog -cat 
variances, thereby inversing the inclusion relationship (i.e. dogs are now included in the 
category of cats). This reversal reinforces their hypothesis. We will examine the explanatory 
power of this model by investigating in greater detail the ways by which autoencoders exhibit 
such an asymmetry effect. We analyze the predictions made by a linear Principal Components 
Analysis. We examine the autoencoder’s hidden-unit activation levels and, finally, we 
emphasize various factors that affect generalization capacities and may play key roles in the 
observed asymmetry effect. 

1 Introduction 

Given that categorization capacities are crucial to cognition, it is not surprising that 
such abilities develop from the earliest age. Researchers have shown that young 
infants only a few months old are able to segment their environment into generic 
categories [10, 12]. Given their adaptive learning capacities, connectionist models 
offer a potential means of modeling human cognitive development. Besides their 
ability to account for general properties of categorization and memory, autoencoder 
networks (encoders, for short) are able to capture certain idiosyncratic 
characteristics of infants’ categorization behavior. Mareschal et al. [4, 6, 7, 8] used 
an autoencoder to provide a simple mechanistic explanation of early infant category 
learning. Interestingly, these autoencoders are able to model the relation between 
attention and representation construction. In experimental settings, categorization 
tasks rely on preferential looking techniques based on the fact that infants pay more 
attention to novel stimuli. The common interpretation is that the infants are 
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comparing an input stimulus to an internal representation of it. As long as there is a 
discrepancy between the input stimuli and its internal representation, the infant 
continues to attend to the stimulus in order to update the internal representation. 
When the discrepancy disappears, attention is switched elsewhere. This process and 
its implementation in an autoencoder is shown in Figure 1. Studies [9] reported that 
3- to 4-month-olds show an unexpected asymmetry in the exclusivity of the 
perceptual category representations formed for certain basic level categories, in this 
case, cats and dogs. Following exposure to a set of cat pictures, the infants form a 
perceptual representation for cats that excludes dogs. In contrast, following 
exposure to a series of pictures of dogs, infants form a category representation for 
dogs that does not exclude cats. In other words, when infants are familiarized with 
dogs, they perceive cats as similar to what they already know and not as a novel 
category, whereas when they are familiarized with cats, they perceive dogs as 
different from what they have previously seen, and, thus, as a novel category. 
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Figure 1. Learning by representation adjustment in (a) autoencoder networks and (b) infants. 

Mareschal et al. [6, 8] have shown that autoencoders exhibit the same asymmetry 
effect. They hypothesize that statistical properties of the environment play the key 
role, given that infants and networks possess no semantic knowledge. The 
examination of the distributions of ten defining features (e.g. nose length, leg 
length, etc.) of the cat and dog stimuli shown to the infants reveals a potential 
explanation for the asymmetry effect. For most of these features, dog features have 
higher variances than the corresponding cat features. Crucially, the distribution of 
the cats’ feature values is largely subsumed by the distribution of dogs’ features. 
According to the authors, differences of within-category variance and an inclusion 
relationship between the two categories’ distributions would cause the observed 
asymmetry effect. One consequence of this hypothesis is that the original 
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asymmetry effect should be able to be reversed by reversing the inclusion 
relationship and the variances (i.e. variances of dog’s features would be kept 
relatively small, whereas variances of cat’s features would be made comparatively 
higher). This prediction was tested: both autoencoders and infants exhibited the 
predicted asymmetry reversal [4]. This model has predictive power given that it 
generates specific testable hypotheses (which, in addition, have turned out to be 
correct). However, predictive power does not necessarily imply explanatory  power 
and, as a result, we propose studying in greater detail some of the fine-grained 
mechanisms that might rise to produce this asymmetry effect. Our hope is to be able 
to provide a more accurate picture of this asymmetry effect. First, we will analyze 
the predictions made by a linear Principal Components Analysis (PCA). Given that 
what a linear PCA does is similar to what autoencoders do, we believe that the 
insights offered by a PCA might shed light on how autoencoders produce this 
asymmetry effect. Then, because the hypothesis of Mareschal et al relies heavily on 
the nature of the internal representations developed by the autoencoder, we will 
examine the information provided by the hidden-unit activations. Finally, we will 
show that statistical tests that reveal the asymmetry effect may not be sufficient to 
disentangle the various alternative hypotheses for why it occurs. Specifically, we 
will emphasize different factors that affect generalization capacities and may play a 
role in the asymmetry effect. 

2 Results and Predictions of a Linear PCA 

Our aim is to attempt an in-depth analysis of the Mareschal et al [8] model. 
Unfortunately, the autoencoder contains nonlinearities that make formal analysis 
rather difficult. Therefore, we have chosen a somewhat eas ier framework that was 
similar enough to draw potentially informative conclusions. The closest statistical 
procedure to the autoassociative neural network is PCA. This technique belongs to a 
more general family of statistical procedures of dimensionality reduction. The 
standard PCA aims at reducing the dimensionality of a dataset by finding principal 
components which are linear combinations of the original dimensions and maximize 
the explained variance. It does very much what an autoencoder does by sending the 
input data through a smaller number of hidden units, which act as a bottleneck. 
Autoencoders use nonlinear activation function and online learning, whereas a PCA 
works with linear combinations and assumes ready-made covariance matrices. 
Nevertheless, PCA seems to be a good candidate to formally analyze the emergence 
of the asymmetry effect, given the ease of studying a linear framework with its 
similarity to encoders. Moreover, certain authors [1, 2, 3, 5] have mathematically 
demonstrated the relative equivalence between autoencoders and PCA in that the 
first principal components span the same space as the autoencoder’s hidden layer as 
long as the autoencoder is trained long enough and there is no particularly complex 
statistical structure in the data. However, a simple mapping between a specific 
hidden unit and a specific principal component is not possible. In other words, the 
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mutual orthogonality between hidden units is not guaranteed, as it is in the case of 
eigenvectors. A natural consequence is that there is no possible ordering of the 
different hidden units as in PCA, where eigenvectors and their associated 
eigenvalues can be ordered. On the other hand, with autoencoders, hidden units 
account roughly for the same amount of variance.  

In a linear PCA, the total variance can be decomposed into the sum of the 
variance explained by the principal components and a residual variance. With zero-
mean variables, the total variance can be recast in terms of distances from the 
origin. If V and P are, respectively, the original and the projected vectors: 
 

Total variance = <||V||²> = <||P||²> + <||V – P||²> 
 

In the above formula1, ||V|| and ||P|| are expressed as Euclidean distances. 
However, the features we used here for the cat and dog categories are not zero-mean 
or unit-variance variables. Thus, the total variance is not equal to <||V||²> in this 
case. Therefore, variance-based and distance-based analyses could lead to different, 
even contradictory, results. For this reason, we decided to perform distance-based 
analyses since the mean squared error (MSE) over output activation patterns in the 
network is equivalent to <||V – P||²>. 

2.1 Method 

In Mareschal et al [8], a 10-8-10 autoencoder was used. In other words, each 10-
element input vector was compressed into an 8-dimensional representation and then 
de-coded to another 10-dimensional output vector. The weights of the network were 
modified until the output approximated sufficiently the input or until 250 epochs 
were reached. We simulated this procedure using PCA. First, we ran a PCA on 
members of one category, say, Dog, using the associated co-variance matrix. The 
eigendecomposition gave us a matrix of eigenvectors, dogM10 . We then created a 
reduced matrix composed of the 8 eigenvectors that explained the most variance for 
the Dog category, dogM8 . For the sake of simplicity, we will designate this reduced 
matrix by M. We then considered the set of dogs, }{ id , and the set of all cats, }{ ic , 
and calc ulated ii dMd ′=  for each dog, and ii cMc ′=  for each cat (This is the 
equivalent of the autoencoder encoding the input at its 8-unit hidden layer.) Then 
we consider each vector id ′  and ic′ and “decode” these vectors with TM . In other 
words for each id′  and ic ′  we calculate TM id ′ and TM ic ′ , respectively (This is 
the equivalent of the output produced by the autoencoder for each member of the 
Dog and Cat categories). We then compute the MSE for each category, which is 
equivalent to the average Euclidean distance between the original input vectors and 

                                                                 
1 <||V||²> indicates the average norm of all V vectors.  
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their respective reconstructions. We then did the same thing, starting with the Cat 
category and producing a matrix of eigenvectors, catM10 , producing a reduced 8-
eigenvector matrix, etc. 

2.2 Results 

Using this procedure for the data of the original experiment by Mareschal et al [8] 
where dogs have a higher total variance compared to cats, we obtained the results 
summarized in Table 1.  

Test with Cats Test with Dogs 
Distance Variance Distance Variance 

 

0.127 
(4.73 %) 

0.001 
(0.40 %) 

0.234 
(7.04 %) 

0.033 
(9.07 %) 

Residual after PCA on Cats 

0.070 
(2.61 %) 

0.044 
(19.23 %) 

0.033 
(0.98 %) 

0.005 
(1.40 %) Residual after PCA on Dogs 

2.69 0.231 3.32 0.366 Total 
Table 1. Results of a linear PCA for the Quinn et al.’s data 

After familiarization with dogs, the difference of mean absolute errors (“distance” 
in Table 1) between cats (0.070) and dogs (0.033) is not significant (t (17.53)=1.40; p = 
0.18) while, after familiarization with cats, the difference of mean absolute errors 
between cats (0.127) and dogs (0.234) is significant (t (17.37)=3.06; p = 0.007). This 
agrees with the observation that when familiarized with dogs, newly presented dogs 
and cats are seen as members of the familiarized category (low amounts of error or 
looking time) but when familiarized with cats, newly presented cats are seen as 
members of the familiarized category but dogs are not and are seen as novel 
(significant increase of error or looking time) (See Figure 2). 

a) Simulations results from [8]
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Figure 2. Results from (a) encoder simulations and (b) PCA, using data from Mareschal et al [8].  

We then attempted to reproduce the asymmetry effect with the morphed data used 
in [4] where the authors altered the total variance of each category to obtain a 
reversal of the original asymmetry. The results are presented in Table 2. 
 

Test with Cats Test with Dogs 
Distance Variance Distance Variance 

 

0.016 
(0.35 %) 

0.002 
(0.75 %) 

0.030 
(0.82 %) 

0.012 
(11.95 %) Residual after PCA on Cats 

0.067 
(1.48 %) 

0.028 
(9.56 %) 

0.008 
(0.21 %) 

0.002 
(1.18 %) Residual after PCA on Dogs 

4.53 0.294 3.62 0.095 Total 

Table 2. Results of a linear PCA for the French et al.’s data 

After familiarization with cats (now the “high variance” category), the difference of 
mean absolute errors (“distance” in Table 2) between cats (0.016) and dogs (0.030) 
is not significant (t(21.02)=2.03; p = 0.055) while, after familiarization with dogs, the 
difference of mean absolute errors between cats (0.067) and dogs (0.008) is 
significant (t (17.05)=3.55; p = 0.002). This confirms the results in [4] (See Figure 3). 

a) Simulations results from [4]
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Figure 3. Results from a) encoder simulations and b) PCA, using data from French et al [4]. 

However, when we examine the errors strictly in terms of variance (rather than 
distance), the measure on which the PCA is based, we no longer reach the same 
conclusion. For each dataset, the asymmetry disappears: residual variance is always 
higher for the novel category compared to the familiar categor y. To examine the 
origin of the difference between the variance-based and the distance-based 
accounts, we need to construct virtual datasets based on the expected critical factor, 
which is the inclusion of the two categories’ distributions of features. If the relative 
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overlap of the two categories’ distributions of features is the main critical factor, we 
could influence the occurrence of the asymmetry effect by building new datasets 
which would differ only by their relative position from each other. In other words, 
we would keep constant other statistical parameters, such as correlations, 
covariances and variances. Moreover, for zero-mean datasets distance-based and 
variance-based accounts will be the same. 

2.3 Predictions with virtual datasets 

In order to test the relative inclusion of the categories’ distributions as a critical 
factor, we used the morphed data from [4] to build two new datasets for the Dog 
category and one new dataset for the Cat category. The new datasets were based on 
those used in [4] in which there was a higher total variance for cats compared to 
dogs and the feature distributions of dogs were largely subsumed by those of cats 
(All feature values had been normalized between 0 and 1). From these original 
datasets, we built the following datasets: a) a “dog” dataset with the original values 
increased by a constant (that may be different for each feature) to push the altered 
values towards the upper boundary of 1, b) a “dog” dataset with the original values 
shifted so that they are centered aro und zero (resulting in both positive and negative 
feature values), and c) a “cat” dataset with values centered around zero. It is 
important to note that in each of these cases, the correlations and covariances 
between features, and the variance for all features remain the same. The critical 
change of the means alters only the MSE. We therefore obtained 6 pairs of 
comparisons (i.e. a total of three “dog” datasets and two “cat” datasets) whose 
relative overlap is given in Table 3. 
 

 Original cats “Centered” cats 
“Increased” dogs  Overlap (1) No overlap (4) 

Original dogs Overlap (2) No overlap  (5) 
“Centered” dogs No overlap (3) Overlap (6) 

Table 3. Pairs of virtual datasets and their relative inclusion. Pair number is between brackets 

According to the hypothesis formulated by Mareschal et al., if two datasets have an 
inclusion relationship such that one falls within the other, an asymmetry effect 
should emerge. Conversely, if two datasets are separated from each other (i.e. no 
overlap), the asymmetry effect should disappear. After replicating the previous PCA 
on the 6 pairs of comparison and considering the variance of each category, we 
found that only pairs 2 and 5 in Table 3 support the above hypothesis. 

In other words, the linear PCA shows that inclusion do es not play a role as 
simple as originally thought but might interact with the category position relative to 
the origin. It turns out that the way one codes the features (e.g. in millimeters, 
inches, Z-scores,…) is of crucial importance. Theoretically, the choice of initial 
coding should not significantly alter the results, but a linear PCA shows that these 
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supposedly arbitrary choices can have significant consequences on the results and 
on the predictions of the model. Note, however, that this might not ap ply to the 
predictions from a network, which is a nonlinear model. Further testing on virtual 
datasets using the original encoders is needed. Nonetheless, these results indicate 
the need for caution when making predictions or analyzing results from this type of 
computer simulation given the model’s sensitivity to initial coding. 

3 Examination of internal representations 

Mareschal et al [8] hypothesize that the key element for the emergence of an 
asymmetric attention effect in infants is an approximate inclusion relation of the 
distribution of feature values for one category within the distribution for the features 
of the other category. According to them, “the asymmetry inherent in the data is 
only translated into corresponding behavior because encoders develop internal 
representations that reflect the distributions of the input features. Thus, the internal 
representations for the narrow category [NC] are subsumed within the internal 
representations for the broad category [BC]… It is because the internal 
representations share this inclusion relationship that an asymmetry in error is 
observed”. In other words, after familiarization with BC items, both novel BC and 
NC items are correctly autoassociated (low reconstruction errors). Therefore, the 
authors suppose that internal representations of NC items fall “inside” the space of 
BC items. On the other hand, after familiarization with NC items, novel NC items 
are, indeed, correctly autoassociated but novel BC items are not (high output 
errors). Therefore, they suppose that internal representations of BC items fall 
“outside” the space of NC items. This argument works if good generalization in 
autoassociation is restricted to the part of hidden-unit space covered by the familiar 
items and that, once you leave this part  of hidden-unit space, poor generalization 
occurs. In this context, it would be interesting to test three points: 
 
1. Are the internal representations of BC items (after familiarization with BC 

items) more scattered than those of NC items (after familiarization with NC 
items) ? 

2. After familiarization with BC, do the internal representations of NC items fall 
inside the range of BC items? After familiarization with NC, do the internal 
representations of BC items fall outside the range of NC items? 

3. Do the internal representations that fall outside the “familiarized” range 
produce systematically higher reconstruction errors ? 

 
The answer to the first question is yes, in the case of autoencoders as shown in 

[7]. However, the last two questions are still unanswered for a nonlinear model. 
Given the inherent complexity of a nonlinear autoencoder, we chose to look at those 
issues within the linear PCA framework, which, as expected, answers the first two 
questions in the affirmative and the third in the negative. In fact, in a PCA, the 
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projections of the original vectors onto the principal components are very close to 
the original vectors themselves (see Tables 1 & 2), which means that the principal 
components space is not very different from the original space. The relativ e 
distances between projected vectors are quite similar to the distances between 
original vectors. In other words, independent of the familiarized category, NC 
members are subsumed by the principal-components space (PC space) covered by 
BC members. On the other hand, this does not imply that internal representations 
that fall outside the familiarized-category range necessarily produce higher 
reconstruction errors on output. Thus, the examination of activation levels in the 
hidden-unit space might not reveal  a structure similar to the structure at the output 
level where errors are recorded. In a PCA, reconstruction errors are independent of 
the relative position of the patterns in PC space. In other words, even clear-cut 
“categories” (i.e., vector clusters) in PC space would not necessarily predict what 
will happen on output. 

Figure 4 shows why projected vectors of BC items far from the origin and far 
from the other projected vectors (in particular, far from the projected vectors of NC 
items) do not necessarily produce higher reconstruction errors. However 
counterintuitive, this interpretation is logical given that reconstruction errors arise 
from distances between the original vectors and their projections onto the PC 
space, regardless of where their projections lay on the principal components (see 
Figure 4). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Even though P1 projects into the training -exemplar zone along the first principal 
component and P2 does not, there will be a smaller reconstruction error for P2 than for P1. 

Figure 4 illustrates a simple example with principal components in two dimensions. 
Assume one keeps only the first PC of the covariance matrix, derived from the set 
of training exemplars indicated by the shaded region in the figure. Now we test two 
novel exemplars, P1 and P2. P1 is projected to the “familiar” (shaded) zone along the 
first principal component, whereas P2 is not. According to Mareschal et al [8], one 
would therefore expect a greater reconstruction error for P2 than for P1. But this 
would not be the case in this example. Rather, the reconstruction error is based on 
the residual error (e1 for P1 and e2 for P2) and, in this case, e1 is considerably greater 
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than e2. As a result, the reconstruction error associated with P1 would be greater 
than for P2, in spite of the fact that P1 projects into the training exemplar zone along 
the first PC, while P2 does not. 

In short, it is not necessary to posit that the asymmetry effect is caused only by 
the relative inclusion of sets of internal representations. Hidden-unit representations 
serve to encode patterns only in order to reconstruct them, not in order to classify 
them. 

4 Factors influencing generalization 

With respect to Quinn & al’s data [9], Mareschal et al [8] claim that: “when 
presented with a cat, a network trained on dogs will recognize this item as a member 
of the category it has learned. In contrast, when presented with a dog, a network 
trained on cats will fail to generalize this item as a member of the category it has 
learned”. Moreover, the authors add that “generalization is better in the dog-to-cat 
direction…”. But this can be argued another way by emphasizing that cats and dogs 
should, in fact, be seen as two distinct categories. We therefore argue that 
familiarization with cats yields a more accurat e picture of the environment, given 
that the new category (“dogs”) is, indeed, perceived as novel, whereas 
familiarization with dogs does not lead to a separate categorical perception of cats.  

In original simulations, researchers used a fixed-epoch criteri on (i.e. learning 
stops after a fixed number of 250 epochs). Given it could have been argued that the 
asymmetry effect arises from the unequal learning of the Cat and Dog categories by 
the networks, the authors decided to switch from a fixed-epoch criterion to a fixed-
error criterion (i.e. learning stops after the error on each output unit drops below a 
fixed criterion of 0.2). Under the fixed-error criterion, training with initial 
exemplars is as good with one category as with the other. This led the authors to 
conclude that unequal learning of the categories does not impact on the asymmetry 
effect. But high-quality learning involves not only being able to reproduce the 
learned exemplars, but, in addition, requires being able to correctly generalize to 
new exemplars of the same category. In fact, the differences reported in Mareschal 
et French [6] – namely, a larger increase in error when the network is presented with 
new dogs after familiarization with cats compared to a presentation of new cats after 
familiarization with dogs – are independent of learning (see Figure 5 for two 
hypothetical examples that illustrate how this might occur). 
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Figure 4. Two opposite asymmetry effects where generalization for dogs is (a) good or (b) poor. 

Both graphs reveal a main effect of the familiarization condition; only the direction 
of the difference changes. Figure 5a buttresses a claim that both cats and dogs are 
seen as dogs after familiarization with dogs. In Figure 5b, the asymmetry effect is 
preserved, but familiarization yields very poor generalization, even for novel dogs. 

In Figure 5a, the (unexpected) result is the small error exhibited when presented 
with a cat after familiarization with dogs. This would mean that networks – like 
infants – show over-generalization because they generalize to members from 
another category. This over-generalization could be due to the fact that cats are 
subsumed by the dog category (the explanation of Mareschal et al [8]). 

On the other hand, Figure 5b shows a very large generalization error to novel 
dogs when trained on dogs. In this case, it could be that the cat category is simply 
easier to learn than the dog category and generalization errors to novel dogs are 
higher.  Or it could be due to the difference in the distributions underlying each 
category and the sampling of exemplars. To achieve good generalization, the 
training set must be representative of the category as a whole. A poor set of training 
data may contain misleading regularities not found in the whole category This is 
particularly serious when the sample size is small, which is clearly the case here. 
Good generalization cannot be expected if a network is trained on samples from one 
region of the space but tested on samples from a completely different region [11]. 
Therefore, sampling in the more restricted (i.e., smaller variance) Cat category 
would necessarily yield training exemplars, as well as test exemplars, that are 
relatively close together in feature space. In contrast, given that variance of dogs’ 
features is relatively high, sampling in the Dog category would result in 
comparatively more widely scattered training and test exemplars.  This would result 
in significantly higher error levels.  

In other words, it is crucial to emphasize the potential role of sampling in the 
asymmetry effect. We accept that within-category variance and relative inclusion of 
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feature distributions of the two categories play a key role in the asymmetry effect, 
but are not necessarily the only relevant factors: sampling procedure and differential 
category complexity may also play an important role as well. 

5 Conclusion 

Researchers have used simple autoencoders to account for an asymmetry effect 
observed in infant categorization of natural cat egories. Their model, based on the 
within-category variances and the inclusion relationship of two categories’ feature 
distributions, was able to reproduce to an categorization asymmetry observed in 
infants and to correctly predict a reversal of this asymmetry by reversing the 
variances and inclusion relationship between the two categories’ feature 
distributions. However, questions remained about the precise mechanisms by which 
this asymmetry arose. Therefore, we performed a linear PCA that showed the heavy 
dependence of results and predictions on the choice of input coding. Further, 
examination of the internal representations in a linear framework demonstrates that 
clusters of representations at the hidden layer do not necessarily predict output 
errors. This potentially implies taking into consideration not only internal 
representations, but also the input encoding of the data itself, in order to account for 
the observed categorization asymmetry. Finally, the generalization ability of a 
network requires taki ng into account the fact that certain categories could be 
intrinsically easier to grasp than others and that the sampling procedure used to 
define the familiarization sets may affect the occurrence of the asymmetry effect. 
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