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Abstract

This paper examines the role of computational modeling in psychology.  Since any
model of a real world phenomenon will fail at some level of description, we suggest
that models can only be understood (and evaluated) with respect to a given level of
description and a specific set of criteria associated with that level. We suggest a
pragmatic view of the main advantages of instantiating psychological theories as
computer simulations.  We suggest that the main function of computational modeling
is to support a process of “probing and prediction” by which models can be interacted
with in a way that provides both guidance for empirical research as well as sufficient
depth to support interactive modification of the underlying theory. Within this
framework we briefly develop a way of comparing the quality of different models of
the same phenomenon.  We argue that models gain explanatory power as well as
practical usefulness when they are emergent, that is, when they provide an account of
how the principles of organization at a given level of description constrain and define
structure at a higher level of description. For this reason, connectionist models would
appear to provide the most fruitful modeling framework today.

Introduction
While the notion that computation lies at the root of cognition goes back at least to

Hobbes’s claim in the mid-17th century that “Reasoning is reckoning”, computational
modeling in general, and connectionism in particular, has a relatively short history. This
short history has not prevented the computational approach from having a significant impact
on psychological theorizing. One would indeed be hard pressed to find a cognitive
psychologist who would deny that behavior is ultimately the result of some form of
“computation.” Curiously, however, while the use of computational metaphors to describe
theories about cognition is widespread, relatively few psychologists actually use computer
simulations in their research, and often resist doing so on principled grounds. For instance,
some authors reject connectionist models because they feel that they are so complex as to be
essentially intractable, and hence inadequate as theories of cognition (e.g., McCloskey,
1991). In this paper we hope, by way of explanation and example, to shed light on the value
of computational modeling in psychology.

We will begin by considering a number of different models, ranging from string-and-
paper-cup contraptions that simulate squawking chickens to low-level neuronal computer
models of thalamocortical oscillations in which virtually all of the parameters are taken from
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the empirical neurobiological literature.  We will suggest, perhaps somewhat surprisingly,
that all of these models have a level of description at which they are perfectly valid.

We then attempt to provide a principled basis for distinguishing the quality of various
models of a given phenomenon.  Most importantly, we suggest that:

• models must imperatively be associated with a given level of
description and

• the main function of computational modeling is to support an
interactive process of “probing and prediction.”

A collection of models
We begin by several concrete examples of models (Cleeremans & French, 1996).
Walking down the streets of Prague, one hears chickens squawking. But when one looks

for the chickens, one finds only a skilled human with a homemade device consisting of a
little cup from which dangles a string covered with rosin. Pulling on the string produces a
sound that resembles chicken-squawking so well that, for all intents and purposes, it is
perfect. But what about the “model” used to produce the squawking? Does it tell us anything
at all about how chickens actually achieve their squawks?

Consider now the following model of a professional basketball player. We know that this
player has a field shooting average of exactly 0.500. So we take a coin and put it in a box.
We shake the coin and whenever a head comes up, we will say that a basket has been made; a
tail will mean a missed bucket. Now we add a little window-dressing to our device. After
four straight heads, it will be rigged to say, “Hey, guys, I'm hot!”. After six straight
“baskets”, it will say, “Hit me, guys, I can't miss!”. After eight, it will say, at increased
volume, “Feed me, feed me, the basket is bigger than a house!”. If we are to believe a study
by Gilovitch and Tversky (see Gilovitch, 1991) of the shooting records of the Boston Celtics
over an entire season, the coin-in-a-box model will produce “shooting patterns” that are
identical to those of a real player. In short, in our example, after a “streak” of five baskets
(five heads) the chances of making the next basket (head) is, well, exactly 0.500. How good
is our coin-in-the-box as a model of a professional basketball player with a 0.500 field goal
shooting average?

What about “full-scale theme parks” that simulate cities? In Orlando, Florida, for
example, a simulated version of Key West, Florida, is being built (Booth, 1996)?  The real
Key West is a small tropical island city at the end of a string of islands off the south tip of
Florida. It has been home to pirates, sailors, smugglers, artists, writers (among them, Ernest
Hemingway) and all manner of romantics for the past two hundred years. Now a full-scale
simulation of the famous city is being created in Orlando. You will be able to walk down
“Duval Street”, get a feeling for the eclectic tropical atmosphere, explore shady back alleys,
observe the lifestyles of (paid) local residents, and stroll on sandy beaches (“gently washed
by mechanically created waves”) simulating with great precision the beaches in the real Key
West.  (This last point is particularly amusing since the original Key West beaches were
anything but sandy, consisting mostly of coarse, unpleasant “coral sand”. The local chamber
of commerce, realizing that these beaches did not fit with most tourists’ notion of a sandy
beach, hit upon the idea of “fixing” the natural beaches by trucking in many thousands of
tons of fine white sand from the beaches of Miami to “simulate” a sandy beach. Thus the
Orlando Key West’s beaches are therefore really simulations of simulations.) Of course, as
one of the architects of the simulation says, “a certain decadence” of the real Key West will
be left out of the simulation. What does our understanding of the simulated Key West tell us
about the workings of the real Key West?
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Finally, consider Deep Blue, the chess-playing program created by IBM that recently beat
the human world chess champion, Garry Kasparov, once and achieved a draw twice in a 6-
game match played under international competition conditions. Deep Blue, like its illustrious
predecessor, Deep Thought, plays chess by “look-ahead”, in other words, by examining the
consequences of a vast number of moves, possible counter-moves by the opponent, etc.  In
the case of Deep Blue, the program is capable of checking on the order of a quarter of a
billion different board positions a second.  It can look ahead at all possible board positions up
through its next seven moves (14 counting its opponent’s moves) before determining what
piece to move.  Does this extraordinary demonstration chess playing tell us anything about
human chess playing?  How does Deep Blue rate as a model of human chess playing?

Intuitively, what seems to be missing from all of these models is some account of the
mechanisms underlying chicken squawking, basketball shooting, city dynamics or chess
playing.  One might argue that until these underlying mechanisms are also modeled we
cannot say anything about the "real thing.” While there is certainly some truth to this, one
must be very careful.

Consider connectionist models. It is known, with something approaching certainty, that
feedforward backpropagation does not exist in the brain, in spite of numerous unsuccessful
efforts (Crick, 1989) designed to find something that could reasonably be said to
“backpropagate” error signals to upstream neurons. As surely as we know that basketball
players are not driven by the flipping of an internal coin, we know that real neural networks
do not work with backpropagation. And yet no one thinks twice when these ubiquitous
feedforward backpropagation networks are used to analyze high-level cognitive phenomena,
such as speech production (e.g., Sejnowski & Rosenberg, 1987), sentence parsing (Elman,
1990) or word recognition (e.g., Seidenberg & McClelland, 1989); mid-level phenomena
such as implicit learning (e.g., Cleeremans, 1993); or even low-level neural phenomena, such
as dyslexia (e.g., Plaut & Shallice, 1993; Plaut, 1995). All of these models have been very
successful in accounting for empirical data, yet all of them are based on the completely
unsupported notion that learning takes places through back-propagation. In what ways are
these models any different than Deep Blue’s highly successful performance at playing chess?

Finally, consider neuronal models (e.g., Miles, Traub & Wong, 1988; Golomb, Wang, &
Rinzel, 1995) that hew to the constraints of experimental neurophysiology with unparalleled
rigor. Ionic channels, sodium and calcium flows are all modeled to match experimental
findings, connection schemes are copied from real neural patterns, neurotransmitter levels are
carefully controlled and the Hodgkin-Huxley equations rigorously respected. From these
models, neuronal spiking patterns can be produced and predicted. Higher lever oscillatory
firing patterns among groups of “neurons” can be observed, predicted, and modified by
changing any of a large number of experimentally observed parameters. Now, you say, this is
real modeling. But this is only a “view from above” by cognitive modelers for whom
synaptic modeling is at an almost unimaginably low level of detail and, therefore, must be
closer to the hard reductionist truths of chemistry and physics. However, this feeling is
illusory: These detailed synaptic models are routinely criticized by neurologists as
oversimplifications of real neural events.

The central issue is whether neural models of either the connectionist variety or of the
low-level synaptic type, are in some fundamental way different from the “obviously wrong”
models of chicken-squawking and basketball-shooting? In this paper we will suggest, perhaps
somewhat surprisingly, that all of the models described above are, in fact, perfectly
appropriate at a particular level of description. Before we develop this argument, however,
we need to root it in a discussion of the main issues involved in making inferences from data
to theory. As we attempt to show in the next section, the relationship between data and theory
is often considerably more complex than it may first appear.
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Inference in psychology
Psychology in general is confronted with two problems. The first problem is to define

and identify the measurable behaviors that correspond to a given phenomenological concept.
The second problem is to identify the cognitive processes and representations that produce
the observed behavior.

Much of the history of research in psychology can be understood as an attempt to
establish relatively objective behavioral definitions for phenomenological constructs. Indeed,
some contemporary areas of psychology (e.g., implicit learning) are replete with definitional
issues.  But even if we were able to agree on a set of measurable behaviors corresponding to
a particular concept, we would still be confronted with the issue of understanding the causes
of the observed behaviors. Making inferences from observed patterns of data to the
underlying mechanisms is precisely what modeling and theory-building are all about.

A single observable behavior, however, may arise from a variety of causes. Our
environment offers many examples that illustrate this simple point. For instance, one’s
television may fail to operate for a number of different reasons: It may be unplugged, the
batteries in the remote control may be dead, a fuse may have blown, the cables supplying
electricity to the tube may have become loose, and so on. At a given level of description,
radically different (low-level) causes may result in the same (high-level) symptom. Any
complex system that relies on many interacting components organized at different levels of
description in order to produce some identifiable high-level behavior is likely to exhibit this
many-to-one relationship between causes and effects. Many psychological constructs are
obviously prone to the same kind of difficulty, even if a perfect definition of the phenomenon
itself were possible.

Thus, while a skilled technician could certainly open up the television and precisely
identify the cause of the failure, she can only do so because she has a detailed theory of how
televisions work. Psychologists, unlike TV technicians, do not yet possess similarly detailed
theories about the working of the mind.  In order to develop such theories of mind, the
architecture and mechanisms underlying cognition must be inferred from behavior. But a
given behavior does not imply a unique cause.  And there are now many examples of
computational systems that are functionally (behaviorally) equivalent despite being based on
radically different processing principles. For instance, many learning systems based on
exemplars turn out to be able to produce abstract behavior and to behave in a rule-like
manner without encoding rules explicitly.  Likewise, the performance of symbolic
computational systems based on chunking (Servan-Schreiber & Anderson, 1990; Laird,
Rosenbloom, & Newell, 1985; Rosenbloom, Newell, & Laird, 1990) overlaps largely with
the performance of the Simple Recurrent Network (Cleeremans & McClelland, 1991) in
accounting for artificial grammar learning tasks performance (see Berry and Dienes, 1993;
Cleeremans, 1993 for discussions). Some authors even go as far as claiming that many of
these models are not empirically differentiable (Barsalou, 1990; Goldstone & Krushke,
1994).  In contrast to these authors, we believe that it is possible to identify general
methodological principles that can be used to preferentially select one model over another.

Overlapping models and levels of description
What are we to make of these overlapping models? Should some be taken as wrong and

others as correct, even though they are all equally successful in accounting for performance?
Or should they all be taken as correct at some level of description? Our view is that the latter
position is the appropriate one. In other words, the accuracy of models can only be judged
with respect to a particular level of description and a specific  set of criteria associated with
that level (see French, 1995, p. 146-48). In general, levels of description have a hierarchical
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character.  In other words, a given level of description will often emerge from a lower level
of description.  For example, a thunderstorm can be described by various high-level
meteorological phenomena such as high winds, rain, lightning, which can, in turn, be
described by the movement of air molecules, the creation of voltage differentials, etc.  But
this hierarchical emergence is not a necessary condition of modeling.  Consider models of
light.  For some purposes, physicists still use Maxwell's equations, based on wave theory.
For other purposes (like in a statistical model of scintillations on a TV screen) they may even
use a simple particle model.  And in still other applications they choose a quantum-
mechanical description, which is neither a wave nor a particle model, but something different
from both.  None of these levels emerges hierarchically from the others as they did in the
thunderstorm example.  But the point remains the same:  the level of description chosen is
highly dependent on the pragmatic context in which the model is to be used.

To take a more psychologically oriented example, consider the effects of practice. In a
wide variety of domains, performance improvement at a given task follows a power law:
Changes in performance are large early in training, and tend to asymptote as training
progresses, in a way that is best characterized by a power function. It is clear that the
statement that the effects of practice follow a power law is merely descriptive: In and of
itself, the equation does not do anything. Nevertheless, the equation is a model, in that it can
imitate the data. It is merely a descriptive one, however, in that it fails to provide an account
of the mechanisms that are involved.

Newell (1990; see also Laird, Rosenbloom & Newell, 1985) has proposed chunking as
the mechanism responsible for the effects of practice. Performance improves because
learning initially involves decomposing a task in many subtasks that need to be tackled
separately — chunks. Through repeated exposure to the task, chunks can be combined, in a
typically hierarchical way, to form more complex chunks. Each complex chunk can then be
processed all at once without requiring further decomposition, and the resulting reduced
computational overhead is sufficient to account for the speed-up in processing. This idea is so
simple and powerful that Newell (1990) has proposed to incorporate chunking as the only
learning mechanism in the production system architecture SOAR. SOAR is a powerful
symbolic modeling environment that consists of a large collection of production rules that
link conditions to actions, and which assumes that most of our cognitive activity can be
described by processes of search in problem spaces. SOAR has been used to model
performance in a wide variety of problem-solving and perceptual tasks. One of the central
properties of SOAR is that through training, rules can be chunked together in the way
described above so as to improve performance. Previously separate production rules are
combined over training as the system detects systematic sequences of rule firings. Several
rules can then become combined into a single rule that fires whenever the conditions of the
first rule in the chain are fulfilled, and that outputs the actions of the last rule in the chain.

Chunking rules in this manner produces power-law improvements in performance, and
SOAR is therefore an explanatory model with respect to the effects of training in that it does
provide a well-defined mechanism to account for how practice at a task results in power-law
like changes in performance. Does this mean, however, that we muist assume that people also
acquire symbolic chunks when learning?  Not necessarily.  In several simulations, Elman
(1990) demonstrated that the Simple Recurrent Network (henceforth, SRN) can learn to
predict each successive element of sequences presented one element at a time. The SRN
elegantly solves the problem of representing time by learning how to use a representation of
the temporal context that the network develops itself over training through the back-
propagation algorithm (see Cleeremans, Servan-Schreiber & McClelland, 1989). In one
simulation, Elman generated a long random sequence of b’s, d’s and g’s and then replaced
each letter by a group of letters according to the following rules: “b” was replaced by “ba”,



6

“d” was replaced by “dii”, and “g” was replaced by “guuu”. From the point of view of a
system that is attempting to predict each element of the expanded sequence, the consonant
elements (b, d, and g) are completely unpredictable since their original order was randomly
chosen, but the vowel elements (a, i, and u) are fully predictable, because both their identity
as well as their number are determined based on which consonant just occurred. After
training on this material, the network learned this regularity perfectly, and produced low
prediction errors for all the vowel elements, but high prediction errors for the consonant
elements. So, for example, the network cannot predict when a g will occur, but once it has
seen a g, it can predict almost without error the subsequent appearance of the three u’s.
Thus, a plot of the error (the difference between the network’s prediction and the actual
successor) as it varies over successive elements shows the typical sawtooth pattern that would
normally indicate that the system has chunked the sequence in small fragments corresponding
to the ba, dii, and guuu sub-sequences in the input. But there is no clear evidence of any such
chunks in the network’s internal representations.  The chunks exist at one level of description
(the input sequence) and are a perfectly appropriate description at that level, but at the level
of description of hidden-layer representations within the network they anything but chunk-
like; rather, they are graded and distributed.

Hence, at a high-level of description, SOAR’s account of the empirical data is perfectly
correct: Chunking does indeed appear to be the crucial mechanism in understanding practice
effects. Yet, at another level of description, it is incorrect to assume that the chunks need to
be explicitly represented as chunks within the system. Instead, as Elman’s work shows, the
chunks may be purely functional and not be represented as such anywhere. Should we then
reject SOAR based on the fact that chunks may be purely functional? Certainly not. SOAR’s
account is very valuable at the level of description at which SOAR operates, that is, at the
symbolic level.

This does not mean, however, that our basic assumptions about how the cognitive system
works are completely neutral with respect to how we think about the relationships between
phenomenology, behavior, and cognition. We believe that such assumptions can have
considerable impact on the conduct of research. For instance, Cleeremans (in press) argues
that one of the central assumptions of the symbolic framework is that the relationship
between observable patterns of behavior and the internal representations and processes that
produce them is direct and transparent (see also Clark, 1990).  The tacit adoption of this
assumption has often resulted in unwarranted inferences from data to the cognitive
architecture.  A classic case of this is the conclusion that because people behave as though
they possess rules, that there is probably an explicit representation of these rules somewhere
in their memory.  Another example and one which will be considered in more detail in this
paper is the inference that double dissociations necessarily entail the existence of separable
underlying modules.

An important function of computational models in psychology is therefore to provide us
with metaphors with which to think about cognition. D. O. Hebb used to emphasize that a
theory did not need to be right in order to be informative and to guide researchers in the right
direction (Harnad, 1985).  Like Hebb, we wish to emphasize that from our perspective,
models — even when they are “obviously wrong” at some level of description — can still
potentially provide insights into the space of theoretical accounts of a given phenomenon.
Rather than attempting to provide a complete (and, consequently, impossible) description of
reality, the main issue is the degree to which a given model is useful in helping us ask new
questions about reality. In the next section, we argue that one of the main determinants of
whether a model will be useful in this specific way is whether or not the model’s primitives
are cast at a level of description that is lower than the level of description that is appropriate
to characterize the phenomena the model is meant to explain.
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Levels of description and explanatory power
The objects of psychological inquiry are complex systems that afford analysis at different

levels of description (Marr, 1982).  Since the different levels all coexist, one might ask
whether the level of description at which theories are framed really matters. We will argue
that what is crucial is the potential ability to explain one level in terms of the primitives of
another.  In other words, our understanding of a given phenomenon gains explanatory power
only when we can provide a causal account of a particular phenomenon in terms of the
entities and organizing principles at a lower level of description than the phenomenon itself.

The main argument of this section, therefore, is that what makes a model useful and
interesting is the fact that its natural primitives are cast at a level of description that is lower
than the level at which the observable regularities that the model are meant to explain are
described. According to this analysis, models can be classified into different categories
according to their relationship with the phenomena they are meant to capture.

Models can, for example, be purely descriptive, meaning that they can provide adequate
descriptions of the data but provide no explanatory mechanisms as to why the data appears as
it does.  For instance, a mathematical formula may accurately describe the parabolic arc of a
cannonball.  While this is a clear improvement over pre-Gallilean depictions of cannonball
flight (i.e., a straight-line ascent, followed an arc of a circle, concluding with a straight-line
descent), it still provides no account of why the arc should be a parabola as opposed to the
earlier incorrect description.  A theory of the underlying causes was needed for that, a theory
later provided by Newton.  Likewise in psychology, statistical theories of learning (e.g.,
Estes, 1957) relied heavily on mathematical descriptions of the changes in performance
caused by learning, but seldom included an account of underlying mechanisms.

Explanatory models, by contrast, do attempt to bridge the gap between observable
regularities and the representations and processes that might be responsible for these
regularities.  Clark (1990) distinguishes between “semantically transparent” explanatory
models that use as their representational and processing medium conceptual elements from
same semantic level as the phenomena they are attempting to explain and emergent
explanatory models that include an account of how lower-level mechanisms might give rise
to the higher-level observable phenomena. Most symbolic models fall into the first category,
in that they appeal to principles that are best thought of as having a direct and transparent
relationship with the data they are meant to explain. SOAR’s account of learning, for
instance, is entirely built around mechanisms that implement chunking. There is, therefore, in
SOAR, a direct conceptual relationship between the phenomenon to be explained and the
mechanisms used to explain the phenomenon.

Connectionist models, by contrast, are examples of the latter type of model, in that they
are emergent: The principles that govern representation and processing in connectionist
networks are cast at a lower level of description than the level of description that is
appropriate to describe their behavior, and bear no transparent relationship with the
phenomena that they are able to account for. For instance, Elman’s SRN can produce
chunking-like performance without explicitly resorting to representing chunks. Instead, the
chunking performance emerges out of the interaction between the constraints that
characterize the task and the principles that characterize the network’s architecture and
processing. This sub-symbolic account of cognition (Smolensky, 1988) constitutes in our
view the main appeal of the connectionist framework, not only on philosophical grounds, but
also for practical reasons. Indeed, one of the main arguments for the use of computational
modeling in psychological research is that it helps formulate better theories because it
enables them to be developed along the lines of an interactive “probing, prediction and
modification” methodology that will be presented later in this paper.. Such interactive
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development is much richer when the model’s representational and processing medium is
rooted in principles that apply to a level of description that is lower than the phenomena to be
explained.

Of course, all emergent explanatory models are not equally valid.  On what basis can we
say that some emergent explanations of high-level phenomena are better than others?  A
detailed treatment of this question is beyond the scope of this paper, but the essence of the
answer undoubtedly lies in the number and nature of the free parameters required by the
causal level and the ability to continue probing-and-predicting at the newly introduced level
of description.  For a detailed examination of this question, see Forster (1988).

Theory-building with computational models
Building theories is of course what science is all about. In this section we would like to

illustrate several different ways in which computational models help us formulate theories. A
simple way to start this discussion consists of asking which criteria should be used to assess
computational models. McCloskey (1991) identified three properties of theories by which
their quality should be assessed: (1) generality, that is, whether the theory unifies existing
data in a way that allows generalization, (2) testability, or whether the theory has identifiable
components to which credit or blame in accounting for data can be assigned, and (3)
specificity, that is, whether the theory is detailed enough that it can be contrasted with other
competing theories in specific ways. To this list, Seidenberg (1993) added a fourth element:
Explanatory power, or whether the theory appeals to independently motivated principles.

Computational models, according to McCloskey, are best thought of as instantiated
(verbal) theories. Seidenberg (1993), on the other hand, stresses that theories should be
explanatory, that is, that they should appeal to independently motivated principles. In
contrast, our perspective on modeling is more pragmatic: What makes a theory useful and
interesting, we contend, is the degree to which it can support a process that we call “probing
and prediction”, that is, whether it can be interacted with in a way that provides both
guidance for empirical research as well as sufficient depth to support interactive
modification. We illustrate this perspective by introducing five functions that computational
models can serve in the context of developing theories. First, models can serve as simple
existence proofs. Second, models can be demonstrations of new capabilities (e.g.,
spontaneous generalization). Third, models can be used to unify an existing body of
empirical and theoretical research. Fourth, models form the basis of a “probing-and-
prediction” research strategy. Finally, models are used for further theory development
through interactive modification of the model in light of the results of probing and
prediction. We now turn to a discussion of each of these functions.

Counterexamples, demonstrations, and existence proofs
Models can simply be vehicles to instantiate counterexamples, demonstrations and

existence proofs (McCloskey, 1991). Assume there is some phenomenon P for which we
hope to gain a better understanding. Further, assume that it is generally believed that “No
system with the set of features S can produce P.” If we can successfully build a system
having the set of features S that can, in fact, produce P, then we have not only produced a
counterexample, but we have also acquired a deeper understanding of P, by the very fact of
developing a system that could produce it. Existence proofs fall into this category. Three
examples from connectionist modeling will serve to illustrate this point.

One of the strong claims of traditional artificial intelligence (AI) has always been that
transformational grammars can only be modeled in rule-based symbolic systems (Fodor &
Pylyshyn, 1988). Chalmers (1990), however, showed how a RAAM connectionist
architecture (Pollack, 1989) could also produce active-to-passive transformations. RAAM
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networks are a variety of recurrent connectionist networks that are capable of learning how to
process hierarchical structures. Because RAAM networks are instances of connectionist
networks, and because connectionist networks rely on distributed representations rather than
on high-level symbolic rules to process information, Chalmers’ demonstration using the
RAAM model constitutes an existence proof. Whether or not humans perform active-to-
passive transformations by means of a RAAM-like architecture (as opposed to applying high-
level grammar rules) is beside the point. Chalmers’ demonstration simply says “There exists
at least one way of performing active-to-passive transformations without high-level rules.” It
does not say, “This is how humans actually do active-to-passive transformations.” Rather,
this type of model can act as a bellwether for future research: If it turns out that the RAAM
architecture, which does in fact contain some features that are relevant to real brains, can also
be used to account for other data, then the case for language processing using connectionist
networks grows stronger.

Another example is provided connectionist networks that can often be described as
obeying rules without possessing anything like high-level rule representations. A well-known
example is Rumelhart & McClelland’s (1986) model of the acquisition of the past tense
morphology. In their model, not only are regular verbs processed in the same way as
exceptions, but neither are learned through anything like processes of rule acquisition.
Similarly, humans exhibiting rule-like behavior cannot necessarily be assumed to possess
high-level, explicit representation of the rules they seem to be following. The point is that
observing sensitivity to some high-level regularity does not necessarily imply that the
regularity itself is represented within the system as an explicit object of representation.

A final example of how models can produce complex emergent effects at the level of
their observable behavior is provided by the work of Plaut and Shallice (1993) on deep
dyslexia. Standard neuropsychological interpretations of clinical data rely heavily on an
assumption that Farah (1994) describes as the “locality assumption”, and which basically
states that the cognitive system consists of a collection of functionally specialized processing
modules that are structurally independent from each other. Double dissociations then receive
seemingly natural interpretations: Damage to one specific module of the system results in
deteriorated performance on tasks involving the function supported by the damaged module
but has no effect on performance involving functions supported by other modules. Plaut
(1995; see also Farah, 1994; Bullinaria & Chater, 1995) however, proposed a radically
different interpretation of double dissociations by showing how a connectionist network can
exhibit functional double dissociation despite not being organized in architecturally distinct
processing modules.

Plaut and Shallice (1993) systematically damaged a connectionist network designed to
produce phonological representations of concrete or abstract words when presented with their
orthographic representation by randomly selecting and removing some connections from
different processing pathways in the network. In so doing, Plaut and Shallice were able to
have the network reproduce the double dissociation pattern observed with human patients. A
detailed account of how the network was lesioned so as to reproduce observed patterns of
dissociation is beyond the scope of this paper, but the point is simply that all pathways are
equally involved in processing both concrete and abstract words. Contrary to most standard
interpretations of double dissociations, this work demonstrates that double dissociations may
not necessarily be attributable to explicit architectural modularization, but may instead be a
consequence of functional specialization in the representational system of the network. In this
way, the modeling work of Plaut complements the work of Dunn and Kirsner (1988), who
arrived at essentially the same conclusions (i.e., a rejection of the standard modular
interpretation of double dissociations) on purely logical grounds.
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These findings have important implications for the present paper because they show that
it is unwarranted to assume the existence of a simple relationship between observed data and
underlying mechanisms.  Observing a double dissociation does not necessarily entail the
existence of separable underlying modules, just as observing rule-like behavior does not
necessarily entail that the rules are represented as such in the system, and so on. In all these
cases, simulation models were instrumental in demonstrating the plausibility of these new
interpretations of high-level behavior.

Demonstrating new capabilities and improving implementations of old ones 
Some models do certain things better than other models. Some do things more “naturally”

than others. Indeed, some models do things that other models cannot do at all. One of the
purposes of modeling is to explore new capabilities or to show how old capabilities can be
achieved in novel ways. Although Samuel (1959) was not concerned with psychological
plausibility, his checker-playing model showed that it was possible for a computer using
“look-ahead-and-evaluate” and “weight-adjustment” techniques to actually learn to perform a
high-level cognitive function.

After Samuel had demonstrated that a computer could be programmed to perform a
particular high-level cognitive task (in this case, checker-playing), Newell et al. (see Newell
& Simon, 1972; Newell, Shaw & Simon, 1957) went on to expand this work into a general
cognitive architecture based on the notion that all of cognition consisted, in one way or
another, of problem-solving. Their problem-solving technique, “means-ends analysis,” was
directly inspired from detailed protocols of humans solving problems. Computational
modeling of high-level psychological processes was off and running. Whenever a roadblock
was encountered — and there were many — new models were developed using new
techniques to overcome the problem. Connectionist modeling was no different. By the
beginning of the eighties, connectionist models were providing new means of understanding
important aspects of human performance, such as spontaneous generalization, content-
addressable memory, or graceful degradation in the presence of noise or damage (see
McClelland, Rumelhart & Hinton, 1986). While some of these capabilities could be produced
by traditional, symbolic models, in connectionist models they were a natural by-product of
the networks’ underlying principles of processing and representation.

Hence models not only provide new capabilities, as in the case of Samuel or Newell,
Simon, & Shaw, but they also can provide new (and better, or more natural) ways of doing
old things. An example from connectionism is the development of the SRN (Elman, 1990).
By their very nature, feedforward backpropagation networks (BPN) are the quintessential
stimulus-response engines. These pattern associators learn functions; in other words, no input
can be associated with more than one output. Consequently a BPN could learn a sequence
“A-B-C-D-E-F” by associating A with B, B with C, C with D, and so on. Then by starting
with “A” and making each successive output the succeeding input, it could reproduce the
originally learned sequence. But what about the sequence: “A-B-C-D-B-F”? The first “B” in
the sequence is followed by a “C” while the second “B” is followed by an “F”. In other
words, a single input produces in one case a “C” and later an “F”. The earliest attempts to
solve this problem used a “sliding window” technique (e.g., Sejnowski & Rosenberg, 1987).
Instead of having a single letter on input, the input consisted of an adjacent pair of letters,
thus: “AB” mapped to “C”, “BC” to “D”, “CD” to “B”, and so on. The problematic 1-to-2
mapping was eliminated and the second sequence could be learned. But what about
sequences that require larger sliding windows, like “A-B-C-D-E-F-B-C-H”? Now, a window
of size three is required for a network to learn the sequence. Problems were solvable with this
technique, albeit in a rather ad hoc manner. Elman (1990) developed a network with a simple
recurrent topology that could solve these sequence problems and did not rely on determining
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the size of a sliding window for a particular problem. It relied instead on a small one-step
internal memory that was fed back into the network at each time step. The Elman technique
was not, strictly speaking, a new capability, but rather a better, more natural way of solving
the problem of sequence learning than the cumbersome “sliding window” method.

Hence a significant function of computational modeling is to develop models which, in
one way or another, demonstrate new capabilities. Subsequent “probing-and-prediction” will
determine whether the ways of achieving these new techniques will be incorporated in later
generations of models.

Unification
A third function of computational modeling is to reconcile previously disparate and

possibly contradictory empirical findings or theoretical accounts. Mendeleev’s development
of the periodic table of the elements is probably one of the most outstanding examples of this
function of modeling. He arranged the elements according to their atomic weight and,
according to his model, was able to predict the characteristics of elements as yet
undiscovered. Not surprisingly, it turned out that this model was inaccurate in a significant
way — namely, that the proper arrangement is one based on atomic number, not weight —
but, in a sense, this is a detail. His model unified a large body of disparate information. Once
he had presented his model of unification, others were able to probe it and to bring it into
better alignment with experimental evidence.

Perhaps the most widely known attempt at unification in psychology is provided by the
work of Newell. In his book “Unified theories of cognition”, Newell (1990) proposes that
psychology attempt to develop wide-ranging theories of cognition and offers the symbolic
model SOAR as the leading candidate for such an attempt. According to its authors, SOAR
can potentially account for all of cognition. This claim, while it may prove incorrect, is
certainly one to which models of cognition should aspire. Perhaps one of the most cogent
criticisms of current connectionist modeling is that they tend to be very “problem-specific.”
There exist myriad connectionist architectures, with an extremely wide range of learning
rules, connection topologies, activation rules, number of nodes, and so on. Often, the best
reason that the authors of a particular model can come up with for why they used it is simply,
“Because it works.”

It is true that the basic principles of all connectionist models were spelled out by Feldman
& Ballard (1982), but these are so broad that they apply equally well to localist networks,
distributed networks, Hopfield networks, feedforward backpropagation networks, and
Hebbian networks, to name just a few. And, while it may be too much to suppose that any
single, undifferentiated connectionist architecture could produce all of cognition — even in
the ultimate connectionist engine, the brain, there are many types of different neurons,
connection schemes, firing capabilities corresponding to different areas of the brain — what
is needed is a connectionist architecture that will be to connectionism, at least in part, what
SOAR claims to be for traditional AI (Weaver, 1993). Nevertheless, a number of
connectionist models that have succeeded in integrating large bodies of empirical research,
and if no specific model can yet claim to be a “unified theory of cognition”, the principles
upon which most connectionist models are based (e.g., parallel processing, distributed
representations, etc.) certainly have universal appeal.

Probing and prediction
How does one work with computational models? In this section, we attempt to answer

this question by discussing a fourth function of computational models: their ability to support
an interactive process of probing and prediction (Cleeremans & French, 1996).  By this we
mean that a model must be able to be probed and must be able to make predictions about the
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phenomenon that it is modeling, rather than simply being able to reproduce the phenomenon
being modeled. These are arguably the two most important points in understanding the
endeavor of modeling.

By probing a model (French, 1995, p. 146; Hofstadter et al, 1995), we mean, in a
figurative way, the ability to “ask the model questions”, to study the responses that it gives,
and to compare these responses with the responses to the same questions as obtained through
empirical research on the phenomenon being modeled. Thus, the quality of the model must
be assessed with respect to the particular probes that it is tested with. This is crucial. Too
often the supporters and critics of a particular model do not clearly specify the criteria (i.e.,
the probes) with which they intend to test the model. This often results in wholesale rejection
of models based on the fact, for instance, that they are unable to carry out a particular task, or
that some detail of their mechanisms is inconsistent with empirical evidence.

The pragmatic perspective on modeling advocated in this paper makes it possible to
distinguish between various types of models, and provides a method — probing and
prediction — by which the quality of models can be judged. It also allows us to see how
models can be modified to eliminate the discrepancies with reality exposed by probing and
prediction.

Let us consider the example of chicken-squawking. If our probe is, “Can the squawk-
producing agent [i.e., the model] fly?” then, of course, the answer is no. And, on the basis of
this probe, the cup-and-string squawker is a very bad model of a “real” squawker (i.e., a
chicken). However, if we focus, say, on the object from which the squawking emanates, then
the model might turn out to be quite good and productive. For example, we might observe
that in the model the squawking sound is caused by a vibrating string. From this observation
we may conclude that perhaps chickens have a similar noise-making device somewhere and
set about to find it.  And we would discover that they do indeed have just such a device —
vocal chords that are vibrated, not by being rubbed with a rosin-coated finger, but by air
forced through them. And we examine how the noise is made in the model, by amplifying it
with a tightly drawn membrane that forms the bottom of an amplification cup. This means
that it might be reasonable to see if there is something similar in the chicken. In the chicken’s
case, its throat and mouth have similar megaphone designs. We could probe the model by,
say, increasing or decreasing the length of the string. This would allow us to make
predictions, with respect to the criterion of string length, about the changes in real chicken
squawking that would be induced by modifying the length of its vocal chords. And those
predictions could be checked. Similarly, say, for the size of the sounding box, or the hardness
of the paper, the quantity of rosin on the string, and so on.

Probing and prediction, of course, go hand in hand. Each time that a particular aspect of
the probing is changed (i.e., a different question is asked of the model), a prediction can be
made about how the equivalent change would affect the real phenomenon. Discrepancies
between predictions and actual performance provide impetus to modify the model, which can
then be further refined.

In a similar vein we could test the model of Key West. If the probes involve the locations
of particular streets, the time it takes to walk from the beach to Duval Street, the size of
Sunset Pier, or even the feeling of Key West street life (the promoters promise a “casual and
eclectic neighborhood [populated by paid] colorful characters”), then the Orlando Key West,
with respect to these probes, will certainly be a good model. If, on the other hand, you want
to get a feeling for the seamier side of Key West life, the sailor hangouts, the red-light
district, the unemployment office for out-of-work shrimp fishermen, the Orlando model will
be a very poor one.

Notice that the ability to carry out this type of probing means that models must have the
flexibility to allow testing. The key to this type of probe-and-predict methodology that we



13

are suggesting is to be able to make many small variations on the model to observe their
effects and to compare those effects with the real world situation (French, 1995, pp. 146–
148).  This then provides one of the prime ways of evaluating the quality of a particular
model:  How well does it support this process of probing and prediction?

This probe-and-predict evaluation strategy will allow us to view modeling of chess
playing in a somewhat unexpected light.

Probing and prediction and the issue of computer chess
In the early days of artificial intelligence, chess playing was considered to be the

quintessential example of a high-level human cognitive activity that might be successfully
simulated by computers. From the late fifties through the mid-seventies, researchers
attempted to take advantage of computers’ extraordinary speed in their attempts to produce a
world-class chess-playing program.  But the goal turned out to be far harder than anyone had
originally imagined. Curiously, the great difficulty of writing a world-champion chess
program had one unsuspected benefit:  It provided a striking example of a high-level
cognitive activity that humans, with their comparatively slow and faulty neural circuitry,
could do far better than machines.  It showed us just how good our own neural computation
algorithms had to be.

Consequently, by the mid-seventies work had begun to focus on “cognitive” heuristic-
driven programs that attempted to incorporate high-level “cognitive” strategies used by
grandmasters to play chess.  These programs met with considerable success compared to the
earlier brute-force programs, but they were still very poor by human standards.  By the end
of the 1970’s a human chess player of average skill could still trounce any computer chess
program in the world.  But it was, nonetheless, widely believed that the “cognitive” approach
to modeling computer chess playing would ultimately prove to be successful.  Some authors
even went so far as to predict that “There may be programs which can beat anyone at chess,
but they will not be exclusively chess players.  They will be programs of general
intelligence, and they will be just as temperamental as people” (Hofstadter, 1979).

But by the mid-1980’s the wind had again shifted with the advent of parallel processing
and far faster computing hardware.  The idea of endowing programs with high-level
“conceptual” heuristics gave way to brute-force lookahead-and-evaluate techniques.  By
1988, Deep Thought, was capable of evaluating 750,000 board positions a second and went
on to beat a number of grand-masters.  Eight years later, a successor to this program, Deep
Blue, using the same type of brute-force lookahead strategy but with the capability of
analyzing a quarter of a billion board positions a second, triumphed over the world chess
champion, Garry Kasparov, even if the program ultimately lost the 6-game tournament by 4
games to 2.  Chess experts currently give Deep Blue a rating of 2650, making it the 20th best
player in the world.

In cognitive modeling circles, Deep Thought and Deep Blue are frequently used as
examples of an obviously “non-cognitive” computer program that is able to (brilliantly)
perform the high-level cognitive task of chess-playing.  The program’s non-cognitive nature
is supposedly the result of its architecture that relies solely on looking ahead at many billions
of board positions before choosing a move, something that we know the human brain does
not do.  They therefore conclude, wrongly in our opinion, that Deep Blue is not a cognitive
model.

Those who maintain that Deep Blue is not a cognitive model have fallen into the level-of-
description trap described earlier.  At the level of the cognitive activity of chess-playing, Deep
Blue certainly is a perfectly appropriate model.  It is indistinguishable from a very good
human chess player in its ability to move pieces around a chess board.  Only once we have
begun to probe the program, as Kasparov did in learning how to play against it (defeating it
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handily in games 5 and 6 after losing the first game and drawing games 3 and 4) do subtle
differences between Deep Blue and human chess players begin to appear.  We cannot say:
Deep Blue’s underlying mechanisms are known to be different than our own, therefore it is
not a cognitive model.  If we allow this reasoning, then nothing (except possibly another
human being) would ever count as a cognitive model, because at some level the underlying
substrate of the model will inevitably differ from the “real” carbon-based neural substrate of
a human.  Connectionist models of all kinds would be subject to this criticism.  We suggest
that the appropriate strategy is to start at the level at which the model does appropriately
model the phenomenon under consideration (in this case, the level of actual chess-playing)
and then begin probing “downward.”  The quality of the model will be determined by two
factors:

• how deeply the model can be probed before differences compared to human
players come to light (French, 1990);

• how many free parameters need to be added to bring the model once more
into alignment with reality as revealed by probing at the new level of
examination (Forster, 1989).

It is interesting to read Kasparov’s description of his interaction with Deep Blue. He talks
about the program’s “understanding of certain positions” and of its having “its own
psychology.”  When interacting with Deep Blue — by competing against it — it makes
perfect sense to apply high-level chess concepts to describe the program’s play.  We can talk
about Deep Blue’s “stalking a piece”, “attempting to capture the center”, “setting a trap”, and
so on, regardless of the brute-force substrate driving the program.

Probing and prediction and human cognition
Now let us extend our comments about Deep Blue to human cognition.  Let us assume

that a brute-force program, Deep Hugh, was developed that was able to successfully play, not
chess, but the ”human cognition game.”  In other words, it could pass a full-blown, hard-as-
they-come Turing Test.  French (1990) has discussed the extraordinary difficulty that any
program that had not lived life like a human had would have in passing this test.  In other
words, were such a thing possible, careful probing would reveal no fundamental differences
between Deep Hugh’s and the participating human’s subcognitive underpinnings.  Having
passed a Turing Test that presumably would have included the type of subcognitive probing
discussed in French (1990), there would be no way for us to detect that Deep Hugh’s
concepts were any different than our own. Probing of Deep Hugh would reveal that its
concepts would exhibit the same rich, deeply interwoven structure as human concepts and
this, regardless of the substrate that produced them.  Whether the program was ultimately
driven by a “brute-force” substrate or a “pseudo-neural” substrate would be of no
importance.

Interactive modification
The probing-and-prediction strategy leads naturally to the notion of interactive

modification. The idea is that whenever a model does not fit the predictions produced by
probing it, it should be modified. The modifications of the model would then gradually bring
it in line with predictions. This opens up an entirely new set of probes to be applied to the
modified model. Questions that could not be asked of the original model can now be asked of
the new model. In this way, we progressively increase the depth of our model.

In certain cases the modifications will produce a new model that further probing will
reveal to be seriously flawed, perhaps irreparably flawed. The classic case of this catastrophic
break-down is perhaps the Ptolemaic model of the cosmos (see Burtt, 1932). The work of
Galileo and Newton subsequently showed that the alternative model proposed by Copernicus
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could accommodate much deeper probing without insurmountable problems (i.e., ultimately
requiring the addition of fewer adjustable parameters than the Ptolemaic model), and further,
that continued refinements could be made in the latter model.

This cycle of probing, prediction, comparison with reality, and model modification is
what modeling is all about. This is why the question of levels of description is so important.
Indeed, if the substrate on which the model is based is sufficiently rich, then probing-and-
prediction will allow the model to be expanded downward towards ever more fundamental
principles. If the substrate is poorly conceived, or even absent, then this type of probing will
most likely dead end.

A number of examples serve to illustrate this point in the area of connectionist modeling.
Our earliest example dates from the first computer model of Hebbian learning (Rochester,
Holland, Haibt, & Duda, 1956). This research attempted to implement Hebbian learning as
described in Hebb’s “Organization of Behavior” (Hebb, 1949). In his book, Hebb carefully
avoided any reference to inhibition, since at that time inhibitory effects had not been
observed in real neuronal circuitry. When Rochester et al. (1956) built their model, however,
they found that without inhibition, activation invariably spread everywhere. In other words,
they had an extremely hard time controlling the spreading of activation in the model. When
inhibitory connections were added, however, the problem was brought under control. This
suggested the importance of inhibition in such networks, and inhibitory connections were
indeed discovered in real neurons at about the same time.

Another example comes from current synaptic modeling. Certain researchers are
attempting to build models of interconnected neurons that rigorously respect a wide range of
neurophysiological data. One particular type of model (Thomas & Wyatt, 1995) models the
interactions of thalamic neurons. Out of the lower level neuronal constructs and equations
used in this model emerge the 3 Hz brainwave oscillations that seem to characterize epileptic
patients during seizures. The idea is to use this model to explore what low-level changes will
disrupt this oscillatory neural firing. The model can therefore be probed with respect to this
criterion (“What can prevent these oscillations from occurring?”). Once this is known in the
model, the corresponding question can be asked of neurophysiologists. (For instance, “De-
inactivating T-channels prevents oscillation in our model, are there any ways to achieve this
pharmacologically in real neurons?”) The obvious advantage of this interactive method is
that it is much easier to explore the space of possible solutions in a computer model than in
real humans.

Finally, a somewhat more detailed example illustrates how modeling work was actually
instrumental in understanding the data. Cleeremans & McClelland (1991) explored
performance in a reaction time situation characterized by the fact that the locations at which
successive events appeared were determined based on the generation rules specified by a
probabilistic finite-state automaton. Thus, on each trial, the stimulus could appear at any
screen location, but some locations were more likely than others depending on the previous
sequence of stimuli. By comparing reaction times on predictable and unpredictable trials,
Cleeremans and McClelland (along with many others, e.g., Nissen & Bullemer, 1987)
showed that in this kind of situation, participants exhibit detailed sensitivity to the sequential
constraints embedded in the stimulus material. Participants tended to be much slower in
responding to stimuli that were inconsistent with the previous sequence (i.e., stimuli that had
a low conditional probability of appearance at that particular moment) than to stimuli that
were consistent. They proposed a connectionist model of performance for this task that
instantiated the theory in the form of an SRN network. One crucial test of the adequacy of
the theory consisted of showing that the response distributions of the model (i.e., activation
strength) and of human participants (i.e., reaction times) both tended to approximate the
distribution of the conditional probabilities of the occurrence of each stimulus in different
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contexts.  It turned out, however, that even though the model’s responses correlated
extremely well with the appropriate theoretical conditional probabilities, they did not
correspond at all to human participants’ responses. This discrepancy prompted a second,
closer look at the human data.  It turned out that a crucial factor that affects reaction time but
not the model’s responses had been overlooked. When simple mechanisms were added to
represent the overlooked effects, the SRN model was then able to account for almost 90% of
the variance associated with human responses — an extremely good fit of theory to data..
The point is that this interaction between theory and data analysis would most likely not have
occurred without the simulation model.

Conclusion
In this paper, we have presented an essentially pragmatic view of computational

modeling. We have suggested that
• the main function of computational modeling is to support an interactive

process of “probing and prediction” through which the model can be
interacted with in a way that provides both guidance for empirical research
as well as sufficient depth to support interactive modification of the
underlying theory;

• the quality of models can, and should, be judged on the basis of their ability
to support this probing-and-prediction methodology;

• models, just as the systems they are models of, can only be understood with
respect to a given level of description and a specific set of criteria associated
with that level (and hence that even demonstrably wrong models can be
useful);

• in general, models constructed from elements whose level of description is
lower than the level of description of the regularities that the model is
designed to account for are more likely to be able to support a probing-and-
predicting analysis.  From this perspective, connectionist models, because
they are emergent, appear to offer the most interesting and productive
avenue of research.

We would like to end this paper with a reflection on some of the potential problems
involved in working with models.  Standard, descriptive models are sometimes rejected
because they seem to offer no more than the verbal descriptions of the phenomenon being
modeled. Connectionist models, on the other hand, have been criticized (McCloskey, 1991)
because they seem to offer a picture of cognition as essentially intractable. McCloskey argues
that the inherent (and enormous) complexity of large connectionist networks is a major
problem because if we do not understand the model any better than the observable data, then
of what value is the theory instantiated by the model?  If we accept McCloskey’s criticism,
does this mean we should refrain from simulating data until we clearly understand all of the
aspects of what the model is doing? We think not. We view the process of developing
theories as a process that ultimately involves the interactive exploration of both the empirical
and modeling spaces. The very aspects of connectionist models that McCloskey criticizes are
what make them attractive as a modeling tools — namely, their emergent, complex and
dynamical behavior (van Gelder, 1995).  Insofar as human-like behavior can emerge from
these models, their underlying complexity may be rich enough to allow the interactive
probing-and-prediction strategies that we have advocated above. Thus, McCloskey’s
characterization of connectionist models as animal models is quite appropriate, in that the
challenge is to understand both the model and the data the model is meant to explain.  We
believe that the benefits of this kind of dual exploration far outweigh its potential drawbacks.



17

From this perspective, then, computational modeling then is not just another tool in the
cognitive psychologist’s toolkit.  It is instead the most important tool of all.  We maintain
that to be truly useful, computational models should be rooted in principles that are specified
at a lower level of description than the data they are meant to explain. The challenge is to
understand how organization at some level of description produces effects at some higher
level of description (e.g., “How does the brain produce mind?”, “How can one produce
symbol manipulation based on distributed patterns of activity in neural circuits?”, “How can
sequentially organized behavior arise from parallel processing mechanisms?”, and so on).

In the final analysis, computational models of cognition are metaphors for the processes
of human thought.  As Dennett (1991, p. 455) has so elegantly put it: “It’s just a war of
metaphors, you say — but metaphors are not “just” metaphors; metaphors are the tools of
thought.”. Likewise, we believe computational models to be the essential tools of theory-
building.
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