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Abstract
A major problem facing connectionist models of memory is
how to make them simultaneously sensitive to, but not
disrupted by, new input. This paper describes one solution
to this problem.  The resulting connectionist architecture is
capable of sequential learning and exhibits gradual
forgetting where standard connectionist architectures may
forget catastrophically.  The proposed architecture relies on
separating previously learned representations from those
that are currently being learned.  Crucially, a method is
described in which approximations of the previously
learned data, called pseudopatterns, will be extracted from
the network and mixed in with the new patterns to be
learned, thereby alleviating sudden forgetting caused by
new learning and allowing the network to forget gracefully.

Introduction
One of the most important problems facing connectionist
models of memory — in fact, facing any model of
memory — is how to make them simultaneously sensitive
to, but not disrupted by, new input.  This problem is often
referred to as the “sensitivity-stability” dilemma (D. O.
Hebb, 1949) or the “stability-plasticity” problem
(Carpenter & Grossberg, 1987).  It  is particularly relevant
for connectionist networks, especially since they can be
afflicted by a particularly severe manifestation of the
sensitivity-stability problem known as catastrophic
interference.  Catastrophic interference is the tendency of
neural networks to abruptly and completely forget
previously learned information in the presence of new
input (McCloskey & Cohen, 1989; Ratcliff, 1990).

Because of the sensitivity-stability problem, all of the
patterns given to a connectionist network must be learned
“concurrently”.  In other words, the entire set of patterns
to be learned must be presented over and over, each time
adjusting the weights of the network by small increments
until the network gradually finds a weight-space solution
for the entire set of patterns.  This a far cry from how
humans learn a series of patterns, however.  Much of
human learning tends to be sequential.  A particular
pattern is learned, then another, and another, and so on.
While some of the earlier patterns may be seen again, this
is not necessary for them to be retained in memory.  As

new patterns are learned, forgetting of old, unrepeated
patterns occurs gradually as a function of time.

In this paper, a connectionist architecture will be
presented that is capable of effective sequential learning,
exhibiting gradual forgetting where a standard
backpropagation architecture forgets catastrophically.
The proposed architecture relies on separating the
previously learned representations from those that are
currently being learned.  Crucially, a method is described
in which an approximation of the previously learned data
(not the original patterns themselves, which the network
will not see again) will be extracted from the network and
will be mixed in with the new patterns to be learned.

The need to separate old and new representations
Most approaches to reducing catastrophic interference in
traditional connectionist architectures have relied on
reducing the overlap of representations either by
orthogonal recoding of the input patterns (Kortge, 1990;
Lewandowsky and Goebel, 1991; Lewandowsky and Shu-
Chen, 1993), or, alternately, by orthogonalizing the
network’s hidden layer representations (French, 1992,
1994; Murre, 1992; Krushke, 1993; McRae &
Hetherington (1993)).  A thorough discussion of these
techniques and an analysis of the underlying causes of
catastrophic interference can be found in Sharkey &
Sharkey (1996). Pushing the logic of reducing
representational overlap to its ultimate conclusion,
McClelland, McNaughton, and O’Reilly (1995) have
argued that radical separation of representations might
have been the approach arrived at by evolution in the
development of the hippocampus and the neocortex. They
justify the brain’s bi-modal architecture as follows:

"The sequential acquisition of new data is
incompatible with the gradual discovery of structure
and can lead to catastrophic interference with what
has previously been learned.  In light of these
observations, we suggest that the neocortex may be
optimized for the gradual discovery of the shared
structure of events and experiences, and that the
hippocampal system is there to provide a mechanism
for rapid acquisition of new information without



interference with previously discovered regularities.
After this initial acquisition, the hippocampal system
serves as a teacher to the neocortex..."

But this stills leaves unanswered a crucial question—
namely:  How does the neocortex store new information,
whether it comes from the hippocampus or elsewhere,
without disrupting information already stored there?
McClelland, McNaughton, and O’Reilly make a
distinction between focused and interleaved learning.  In
the former case, new information is simply presented to
the system, perhaps a number of times, but without
interleaving it with old, previously acquired knowledge.
In the latter type of learning, the new knowledge is
interleaved with the rest of the database of already
acquired knowledge.  They show that significant
disruption of previously acquired information (very much
like catastrophic interference) occurs in focused learning.

Their solution involves the very gradual incorporation
of the new information into the neocortical structure (i.e.,
long-term memory).  Hippocampal representations very
gradually train the neocortex. The problem is that no
matter how slowly the hippocampal information is passed
to the neocortex, radical forgetting of the old information
may result, unless a way is found to interleave the already
stored neocortical patterns with the new patterns being
learned.  This interleaving cannot always use “the rest of
the [original] database” of previously learned patterns
because many of these patterns will no longer be explicitly
available for re-presentation to the network.  Once we
have learned about penguins and wish to learn about, say,
mice or tractors, we do not have to continue to be shown
penguins so as not to forget them. Unfortunately, this is
necessary for standard backpropagation networks to
prevent forgetting of previously learned patterns.  When
learning new information, the previously learned
information must once again be explicitly presented to the
network, otherwise it may be completely forgotten.

The architecture proposed in this paper will provide a
way to automatically refresh the network without recourse
to the original patterns.  Instead of the original patterns,
internally-produced approximations of these patterns,
called pseudopatterns (Robins, 1995), will be used and
interleaved with the new patterns to be learned.  The
architecture proposed will argue for two functionally
distinct areas of long-term memory:  one, an “early-
processing area” (or “buffer-storage area”) in which new
information will be initially processed and a second, a
“final-storage area,” in which information will be
consolidated.  This model of long-term memory will
suggest a natural means of consolidation of information in
long-term memory that supports the neurobiologically
motivated conclusions of Robins (1996).

Training in standard error-driven
connectionist networks

 The ideal way, of course, to solve the stability-sensitivity
problem would be to store all previously learned patterns
out of harm’s way until new input was presented to the
system. At that point, all of the previously learned
patterns would be taken out of storage, so to speak, and
would be mixed with the new patterns.  The system would
then learn the mixed set of old and new patterns.  After
the augmented set of patterns had been learned by the
network, it would be put in storage, awaiting the next time
new information was presented to the network. There
would be no forgetting, catastrophic or otherwise, in this
ideal world and new input would have no deleterious
effect on the network’s ability to generalize, categorize or
discriminate.

Unfortunately, this way of learning new data is rarely
possible in the real world except in the most artificial
situations.  It is in essence impossible to explicitly store
all, or even a reasonable fraction of previous training
exemplars for future learning. I will suggest that internal
approximations of the original patterns are generated in
long-term memory and it is these approximations that, in
the absence of the real pattern-in-the-environment, serve
to continually reinforce the long-term memory traces of
the original patterns. The use of pseudopatterns to
improve performance of connectionist networks on
catastrophic interference was first proposed by Robins
(1995) and their plausibility has been further explored in
Frean & Robins (1996) and Robins (1996).

E rror  s igna l

N E W  PA T T E R N1 (IN PU T ) R A N D O M  IN PU T

N E W  PA T T E R N1 (O U T PU T )

inh ib ito ry  l ink

N E W  PA T T E R N2 (IN PU T /O U T PU T )
N E W  PA T T E R N3 (IN PU T /O U T PU T )
N E W  PA T T E R N4 (IN PU T /O U T PU T )
N E W  PA T T E R N5 (IN PU T /O U T PU T )

. . . .

B U FFE R -ST O R A G E  A R E A

FIN A L -ST O R A G E  A R E A

T E A C H E R  N O D ES

Figure 1.  The pseudo-recurrent network architecture



The “pseudo-recurrent” architecture
The architecture discussed in this paper consists of a
feedforward backpropagation network that is divided into
two parts, one used to help train the other (Figure 1). We
will call the left-hand side of the network the “buffer
memory” and the right-hand side the “final-storage
memory.”  The system works as follows. When a new
pattern from the environment, consisting of an input and
an associated output (the “teacher”), is presented to the
system, this will cause activation to spread through both
sides of the network.  The fact that the new pattern is
“real” (i.e., from the environment) means that its
“teacher” will inhibit the output coming from final
storage. The new pattern will be learned in the “buffer
memory” by the standard backpropagation algorithm.

At the same time, a number of “pseudopatterns” will
be generated by the final storage memory.  In other words,
random input will be fed into the network.  Activation
will spread through both the buffer and final-storage areas
of the network.  Crucially, the output of this random input
sent through the final-storage part of the network will be
used as a teacher for the buffer part of the network.  In
other words, the buffer network will then learn a series of
pseudopatterns produced in the final-storage area that
reflect the patterns previously stored in final-storage.  So,
rather than interleaving the real, originally learned
patterns with the new input coming to the buffer memory,
we do the next best thing — namely, we interleave
pseudopatterns that are approximations of the previously
stored patterns.  Once the new pattern and the
pseudopatterns are learned in the buffer area, the weights
from the buffer network are copied to the corresponding
weights in the final-storage network.

I have called the architecture “pseudo-recurrent” not
only because of the recurrent nature of the training of the
buffer memory by the final-storage memory, but also as a
means of acknowledging the all-important mechanism of
information transfer from final-storage to buffer storage
— namely, pseudopatterns.

A specific example may help to clarify the learning
mechanism.  Suppose that there are 20 patterns, P1, P2, ...
P20. Each of these patterns, Pi consists of an input and an
output (“teacher”) association (Ii, Ti).  The system will be
required to sequentially learn all 20 patterns, In other
words, each individual pattern must be learned to criterion
before the system can begin to learn the subsequent
pattern. To learn pattern P1, its input I1 is presented to the
network.  Activation flows through both parts of the
network but the output from the final-storage part is
prevented from reaching the teacher nodes by the “real”
teacher T1.  The buffer network then adjusts its weights
with the standard backpropagation algorithm using as the
error signal the difference between T1 and the output of
the buffer network Oi.  Internally created pseudopatterns
from the final-storage memory are now generated and will

be learned by the buffer memory.  This is done by
presenting random input to the network, which causes
activation to spread through both the buffer and the final-
storage memories. For “pseudo”-input, unlike for “real”
input, there is no “real” teacher to inhibit the arrival of
final-storage activation to the teacher nodes (i.e., the third
layer of the final-storage network).  The activation on the
teacher nodes is thus produced by the spreading of
activation by the pseudo-input through the final-storage
memory.  These teacher nodes then serve to train the
buffer memory.

It is instructive to examine in detail the operation of
one of the pseudopatterns.  A random input pattern, i1, is
presented to the input nodes of the system.  This input
produces an output, o1, at the output layer of the buffer
memory and also produces an output, t1, on the teacher
nodes of the final-storage memory.  This input-output pair
(i1, t1) defines a pseudopattern, ψ1, that reflects the
contents of the final-storage memory.  The difference
between t1 and o1 determines the error signal for changing
the weights in the buffer memory.  The other random
inputs, i2, i3, . . . in, are successively presented to the
system and the resulting pseudopatterns, ψ2, ψ3, . . . ψn

will also be learned by the buffer memory.  Once the
weight changes have been made for the first epoch
consisting of {P1, ψ1, ψ2, . . . ψn}, the buffer memory
cycles through this set of patterns again and again until it
has learned them all to criterion. By learning the pattern
P1 the buffer memory is learning the new information
presented to it; by learning the pseudopatterns ψ1, . . ., ψn,
the buffer memory is learning an approximation of the
information previously stored in final storage.  Obviously,
the more pseudopatterns that are generated, the more
accurately they will reflect the contents of final storage.
(However, with too many pseudopatterns the buffer
memory may fail to converge.  The type and number of
pseudopatterns to use is an area of on-going
investigation.)  Once learning in the buffer network has
converged for P1, ψ1, ψ2, . . . ψn, the buffer weights then
replace the final-storage weights.  In other words, the
buffer memory becomes the final storage memory and the
network is ready to learn the next pattern, P2.

Although a fairly obvious point, it is worth noting
that as the number of pseudopatterns per new item
increases, there is a corresponding decrease in the amount
of previously learned information lost.  This will be
clearly seen in the experiments reported below.

Databases used for the experiments
A number of experiments were run to test this
architecture. Two “real-world” database from the
University of California at Irvine repository of machine
learning databases (Murphy & Aha, 1992) were used to
test this system.  The first of these UCI databases was the
“mushroom” database and the second database, also used



to study catastrophic interference in French (1992, 1994),
was the 1984 U.S. Congressional Voting Records
database.

Tests of the pseudo-recurrent network
In the experiments described below will show that if a
network can continually train itself (pseudo-recurrence)
on an approximation of previously acquired information,
that the problem of severe interference is drastically
reduced and the system will become stable in the presence
of new information.  We then show how this type of
system is able to do true sequential learning, gradually,
rather than suddenly, forgetting old information. Finally,
we mention how the system can be extended so that the
requirement of an equal number of hidden units for the
buffer and final-storage memories can be removed.  This
extension involves using pseudopatterns to transfer
information between both parts of the memory.

Experiments

Experiment 1:  Performance of a pseudo-recurrent
network on the UCI mushroom database
For this experiment, we will consider data from the UCI
mushroom database (Murphy & Aha, 1992).  From this
database we selected two “quasi-contradictory” sets of
mushrooms.  Quasi-contradictory pairs of mushrooms
were are those that differ on no more than 3 (of 22)
attributes with one member of each pair being poisonous,
the other edible.  There were approximately 70 such pairs
of closely paired edible/poisonous mushrooms in the UCI
database. We picked 20 mushrooms for the original
training set and 20 “quasi-contradictory” partners for the
second set to be learned.  The original set contained 17
edible  mushrooms  and  3  poisonous   mushrooms.    The
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Figure 2.  Percentage indicating the number of
epochs required to relearn the original 20 patterns
compared to the number of epochs initially required
to learn these patterns after the pseudo-recurrent
network had learned the second set of 20
“contradictory” patterns.
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Figure 3.  The increase in the proportion of items in
the originally learned set exactly recognized by the
network after learning the set of contradictory items.

second set of new mushrooms that closely resembled those
in the first set (the “contradictory data”) contained 17
poisonous and 3 edible mushrooms.

For this experiment, each mushroom attribute was
coded in a binary manner and added to the input vector
describing the mushroom.  The system performed a yes/no
(poisonous/edible) classification task.  The architecture of
the pseudo-recurrent network had 57 input nodes, 10
buffer hidden units, 10 final-storage hidden units, one
buffer output unit and one teacher unit (see Figure 1 for
the design of the overall architecture).  The learning rate
was set at 0.2, momentum at 0.9, and the convergence
criterion at 0.2.

The large number (57) of input nodes means that the
information transfer using pseudopatterns will necessarily
be approximate, since the probability of actually
reproducing any of the actual patterns previously stored in
final storage will be, for all intents and purposes, zero.

Figures 2 and 3 show significant improvements on
depth-of-forgetting (as measured by the time required to
relearned the original data) and exact recognition of items
previously learned.  In other words, the pseudo-recurrent
network succeeds in maintaining the memory trace of the
previously learned patterns while learning the new
patterns.  This should mean that true sequential learning
of patterns, characterized by gradual forgetting of old
information, should be possible with this type of network.
Experiment 2 is designed to demonstrate the feasibility of
sequential learning with a pseudo-recurrent network

Experiment 2:  Sequential learning
Arguably the most significant contribution of the pseudo-
recurrent network is its ability to learn data in a serial
manner without experiencing severe interference
(Hetherington, 1991).  In this experiment, the patterns
were taken randomly from the 1984 Congressional Voting
Records database at the UCI repository.  Twenty members
of Congress (10 Republicans, 10 Democrats, defined by



their voting record on 16 issues) were chosen randomly
from the database and were presented sequentially to the
network.  In other words, a new pattern was presented
only after the previous one had been learned to criterion.
The order of presentation was randomized over 50 runs of
the program.
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Figure 4.  Percentage of all data exactly recalled by
the network after serial presentation of all 20 patterns
(median data).

After the twenty patterns were sequentially learned by
the network, a test was made of the percentage of these
items were exactly recognized (i.e., actual output within
the criterion of 0.2 of the desired output).  Figure 4 shows
that with standard backpropagation this figure is around
40% whereas it improves rapidly to 65% with the addition
to each new pattern to be learned with only 5
pseudopatterns from final storage.  With 50
pseudopatterns added to each new item to be learned,
exact recognition of all of patterns climbs to 85%.

After the network learned the twenty items
sequentially, each item was individually tested to see how
well the network remembered that item. The hypothesis
was that the items that were learned first would show the
greatest amount of error and that this curve would become
more gradual as the number of pseudopatterns increased.
Figure 5 shows that forgetting in the case of the
pseudopatterns is indeed more gradual. As can be seen in
the figure, the standard BP network is, on average,
significantly above the 0.2 convergence criterion for  all
of  the  previously  learned   items,   whereas  the pseudo-
recurrent network is at or below criterion for the last eight
items learned (items 13-20) and within 0.05 of the
criterion for items 7-12.  Clearly, forgetting is taking
place far more gradually in the pseudo-recurrent network
than in the backpropagation network, where none of the
19 previously learned items are below criterion after the
20th item has been learned (Figure. 5).
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Figure 5.  Amount of error for each of the 20 items
learned sequentially after the final item has been
learned to criterion (in this case, 0.2).

The most important advantage of the pseudo-
recurrent network is its ability to learn patterns
sequentially.  This experiment shows that the forgetting
curves for this type of network are considerably more
gradual than with standard backpropagation.  This
experiment also points out the importance of interleaving
approximations of the already-learned patterns with the
new patterns to be learned.

Using pseudopatterns to transfer information in
both directions between the buffer memory

and final storage
Does this pseudo-recurrent architecture always

require identical numbers of hidden nodes in the buffer
memory and in the final-storage memory?  As presented
in this paper, the answer is yes.  But it is not difficult to
modify the model so that information is transferred both
from final storage to the buffer memory as well as from
the buffer memory to final storage by means of
pseudopatterns.  The advantage of directly copying the
contents of the buffer memory to final storage is, of
course, that there is no loss of information.  The
disadvantage is that the number of  buffer and final-
storage hidden units must be identical and that the idea of
copying weights directly from the buffer memory to the
final-storage memory lacks psychological plausibility.

Instead of copying the weights from the buffer storage
to the final storage, the contents of the buffer memory are
transferred to final storage by means of pseudopatterns.
In other words, once the new data (along with the
pseudopatterns from final storage) have been learned to
criterion in the buffer memory, the buffer memory
generates a number of pseudopatterns that are then
learned by the final-storage memory.  The output nodes of
the buffer memory then become the teacher nodes for the
final-storage memory.
    This work has been done and is reported in French
(1997).



General Conclusions
This paper proposes a “pseudo-recurrent”

connectionist model of long-term memory in which a
“buffer” memory and a permanent, “final-storage” memory
interact.  To ensure stability of previously learned
information and sensitivity to new information this system
new information to be learned is mixed with an
approximation of previously learned information kept in
the final-storage part of the network.  The medium of
information exchange from the final-storage memory to the
buffer memory is pseudopatterns generated by the final-
storage memory and learned by the buffer memory when it
is learning new information.  This pseudo-recurrent
network has numerous advantages, the most significant
being that it provides an effective, plausible means of doing
sequential learning.
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