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Abstract

According to the age-of-acquisition hypothesis, words acquired early in life are processed faster and

more accurately than words acquired later. Connectionist models have begun to explore the influence

of the age ⁄ order of acquisition of items (and also their frequency of encounter). This study attempts to

reconcile two different methodological and theoretical approaches (proposed by Lambon Ralph &

Ehsan, 2006 and Zevin & Seidenberg, 2002) to age-limited learning effects. The current simulations

extend the findings reported by Zevin and Seidenberg (2002) that have shown that frequency trajecto-

ries (FTs) have limited and specific effects on word-reading tasks. Using the methodological frame-

work proposed by Lambon Ralph and Ehsan (2006), which makes it possible to compare word-reading

and picture-naming tasks in connectionist networks, we were able to show that FT has a considerable

influence on age-limited learning effects in a picture naming task. The findings show that when the

input–output mappings are arbitrary (simulating picture naming tasks), the links formed by the network

become entrenched as a result of early experience and that subsequent variations in frequency of expo-

sure of the items have only a minor impact. In contrast, when the mappings between input-output are

quasi-systematic or systematic (simulating word-reading tasks), the training of new items was general-

ized and resulted in the suppression of age-limited learning effects. At a theoretical level, we suggest

that FT, which simultaneously takes account of time and the level of exposure across time, represents a

more precise and modulated measure compared with the order of introduction of the items and may

lead to innovative hypotheses in the field of age-limited learning effects.
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1. Background to the debate

An important issue in the field of psychology is to determine whether items (words,

objects, faces, etc.) that are acquired early in life are processed faster and more accurately

by adults than those that are acquired later in life, that is to say whether there is a late influ-

ence of early acquisitions. It seems plausible that the order of word acquisition is a factor

that is directly responsible for the ease of processing these words, and indeed, this is the cru-

cial tenet of the ‘‘AoA hypothesis.’’ This issue has fueled a debate in psycholinguistics. A

large number of studies have provided convincing evidence of age-limited learning effects

in lexical processing tasks (Johnston & Barry, 2006; Juhasz, 2005 for reviews) using age-of-

acquisition (AoA) norms collected either from adult ratings (subjective AoA norms) or from

children’s performance (so-called objective AoA norms). Using subjective AoA norms,

AoA effects have been found in a large variety of tasks (e.g., object, face, and action naming;

word reading; and lexical decision) and in different populations (e.g., children, young and

old adults, monolinguals and bilinguals, and aphasics). Recent attempts to manipulate AoA

have revealed that this factor has a reliable influence on the learning of artificial patterns

(Stewart & Ellis, 2008) as well as on the learning of a foreign vocabulary (Izura et al., 2011)

in laboratory settings. However, despite the fact that robust AoA effects have been found in

a wide variety of behavioral tasks (and simulations; see below), there is an ongoing debate

as to whether the order of acquisition of the words is per se an important factor in determin-

ing the ease with which they are processed in both normal and impaired adults or whether

the order of acquisition of the words is the result of several other embedded factors. Indeed,

as far as the learning of the words in a language is concerned, factors other than the order in

which the words and ⁄ or concepts are encountered are obviously involved and are also cer-

tainly responsible for the speed and the accuracy of acquisition (with the result that certain

words are acquired before others). Among these factors are (a) the frequency with which the

words are encountered (e.g., during a certain period of life and, throughout one’s entire life-

time) and (b) the kind of relationships, for example, systematic, quasi-systematic, and arbi-

trary, that exist between different types of codes (e.g., between phonological and

orthographic codes, and between semantic codes and phonological codes). Some words are

more frequent during certain periods of acquisition (e.g., ‘‘fairy’’ during childhood) than

during others (e.g., ‘‘tax’’ during adulthood), and some other words retain their frequency of

exposure during the lifespan (e.g., ‘‘house’’ is a high-frequency word and ‘‘platypus’’ a

low-frequency word during both childhood and adulthood). Words that are frequently

encountered are acquired earlier than those that are encountered less frequently (Bonin,

Barry, Méot, & Chalard, 2004; Hazard, De Cara, & Chanquoy, 2007; Zevin & Seidenberg,

2002, 2004). However, as we will see, the question of whether words that have been fre-

quently encountered during an early period of acquisition (whatever the evolution of their
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frequency later in life) are easier to process later in life than words encountered less fre-

quently depends on the kinds of relationships existing between the different types of codes.

In alphabetic languages such as English or French, there are quasi-systematic relationships

between sound units and orthographic units, whereas the relationships between semantic

units and phonological (or orthographic) units are arbitrary. When quasi-systematic relation-

ships are present, what is learned from certain items can be generalized to other items and,

as a result, the processing of new items is easier than when no such generalization is possi-

ble, as is the case with arbitrary mappings (Lambon Ralph & Ehsan, 2006). In two behav-

ioral studies, Bonin et al. (2004) and Zevin and Seidenberg (2004) have suggested that

lexical processing varies as a function of both the frequency trajectory of the words (i.e., the

frequency of exposure at various points during cognitive development) and the kinds of rela-

tionships that exist between semantics, phonology, and orthography. However, as the AoA

of words (that is to say, adult-rated AoA as is frequently used in empirical studies) also has

an impact on lexical processing, it is still necessary to determine whether frequency trajec-

tory (FT) has an effect independent of that of AoA. Moreover, these authors have shown that

FT effects also depend on the kinds of relationships that exist between semantics, phonol-

ogy, and orthography. More precisely, Bonin et al. (2004) have revealed reliable age-limited

learning effects in both oral and written naming latencies (where the relationships between

object names and semantics are arbitrary), but not in word reading and in spelling-to-dicta-

tion latencies (in alphabetic languages such as French or English, the relationships between

orthography and phonology are quasi-systematic). Although the measurement of the AoA of

words (but also the objective frequency norms that are most appropriate to properly index

the frequency of encounter of the words; see, for instance, Brysbaert et al., 2011) has been a

topic of debate (Bonin, Méot, Mermillod, Ferrand, & Barry, 2009; Bonin et al., 2004), there

is a general consensus that both the order ⁄ age of acquisition of the words and their objective
frequency of use exert an influence in certain lexical tasks, and, more particularly, those

tasks that rely on semantic-to-lexical mappings (e.g., object and face naming). As we shall

see below, for many years, the range of empirical evidence in support of AoA effects

exceeded the explanatory capabilities of the corresponding theoretical accounts. However,

the theoretical account provided by Ellis and Lambon Ralph (2000) has proved to be very

influential and fruitful in that it has shifted the focus from the collection of empirical demon-

strations of age-limited learning effects in different tasks to the methodological and theoreti-

cal discussion of these effects. This study obviously adopts a similar approach. Indeed,

several hypotheses have been put forward in the literature to account for age-limited learn-

ing effects, and it is not our intention to review these here (see Johnston & Barry, 2006). As

stated above, one of the most fruitful and attractive accounts of age-limited learning effects

is the connectionist account initially put forward by Ellis and Lambon Ralph (2000).

2. Age-limited learning effects in connectionist networks

Although distributed neural networks have long been used to address various issues in

word recognition and spoken word production studies, they have also recently been used to
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address the computational basis of age-limited learning effects (e.g., Ellis & Lambon Ralph,

2000; Lambon Ralph & Ehsan, 2006; Monaghan & Ellis, 2010; Zevin & Seidenberg, 2002).

In these connectionist models, lexical frequency is encoded in the strength of the connections

between the different types of representations, which are involved in recognizing and pro-

ducing words (Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland,

1989). As far as connectionist simulations of age-limited learning effects are concerned, the

main innovation introduced by Ellis and Lambon Ralph (2000) in their simulations was that

some patterns were used in training from the outset (‘‘early’’ patterns), whereas other

(‘‘late’’) patterns were only introduced after the network had spent time learning the early

ones. Using this manipulation, they showed that the synaptic weights of the system exhibited

considerable plasticity for the early items. Conversely, late acquired items were more diffi-

cult to encode because these synaptic weights had already become ‘‘entrenched’’ during the

coding of the first items. On the basis of this reduction of the plasticity of the synaptic

weights with learning, the authors were the first to show that the order of introduction of the

encounters determines the number of errors produced by the connectionist network at

the end of training. More precisely, the main findings from their simulations included the fol-

lowing: (a) The benefits of early entry into training could not be accounted for in terms of

differences in the frequency of training between the early and late sets. More specifically,

when the late set was trained at a slightly higher frequency than the early set following its

introduction to ensure that cumulative frequency was matched at the end of training, the sys-

tem still performed better on the early than the late set. (b) High frequency of training

brought about an additional benefit that was independent of the effect of order of entry.

(c) Once an early item had been learned, its frequency of training could be reduced by a fac-

tor of 10 with no harmful effect on its representation. However, some forgetting was

observed if items were removed from training altogether. And (d) items that only entered

training very late had been trained at a very high frequency if they were to be learned effec-

tively.

Zevin and Seidenberg (2002) have proposed an alternative theoretical framework to

account for age-limited learning effects. In their theoretical approach, the AoA of the items

does not constitute an independent variable per se but is instead an outcome variable that is
actually determined by other factors. Given the significant link between AoA and cumula-

tive frequencies, these authors suggested that the frequency trajectory of the encounters was

an important factor. Zevin and Seidenberg (2002) found no frequency trajectory effects on

network performance with background items. However, they found a weak but significant

FT effect in simulation three under very specific circumstances, namely when background

items were eliminated and ‘‘critical’’ items with very few neighbors were used. This sug-

gests that the neighborhood of the encounter might influence AoA effects in artificial, and

presumably also in biological and neural networks. Thus, whereas Ellis and Lambon Ralph

(2000) suggested that the order of introduction of the items is a factor determining the per-

formance of artificial or biological systems, Zevin and Seidenberg (2002) proposed that fre-

quency trajectory better indexes this performance. In this view, AoA is actually an outcome
variable and not an independent variable factor. This theoretical approach has been pro-

posed for both connectionist networks (Zevin & Seidenberg, 2002) and for behavioral data
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(Bonin et al., 2004; Zevin & Seidenberg, 2004). Consequently, Lambon Ralph and Ehsan

(2006) decided to further investigate this hypothesis of differential AoA effects in connec-

tionist networks by manipulating the input–output relationship while retaining the theoreti-
cal framework proposed by Ellis and Lambon Ralph (2000), which holds that the order of

introduction of the items determines age-limited learning effects. Lambon Ralph and

Ehsan’s (2006) simulations showed that as the outputs became more predictable on the basis

of the inputs, that is, as the mappings went from arbitrary through ‘‘quasi-systematic’’ to

‘‘systematic,’’ the effects of order of entry into training were reduced; that is to say, the cost

of late acquisition became progressively less. In other words, they found that the order of

introduction of the items had an effect with arbitrary mapping (each input vector is associ-

ated with a unique but arbitrary output vector), but not with componential mapping (when

the input-output relationship is determined by a systematic association rule). The aim of this

study was to establish a broad harmonization between Ellis and Lambon Ralph (2000),

Lambon Ralph and Ehsan (2006), and Zevin and Seidenberg (2002).

3. Toward a unified theoretical framework

In this study, we introduce a proposal that attempts to reconcile studies on the order of

introduction of the encounters, on the one hand, and studies of frequency trajectory, on the

other. While the main body of the theory comes from Ellis and Lambon Ralph (2000), all

the connectionist models of AoA, including that of Zevin and Seidenberg (2002), bear on

this theory. However, Zevin and Seidenberg (2002) proposed FT as another way to opera-
tionalize age-limited learning effects. Surprisingly, this new proposal did not give rise to a

large number of studies. Why? In our view, one reason might be that FT has long been per-

ceived as a competing theory in the community. In our opinion, if we are to move beyond

this situation, it has to be firmly established that (a) order of acquisition and FT rely on the

same theoretical framework (related to synaptic entrenchment in biological or artificial neu-

ral networks); (b) the Zevin and Seidenberg (2002) study reported a very small age-limited

learning effect in very specific situations because these authors used a word reading task,

whereas Lambon Ralph and Ehsan (2006) reported that these effects occur essentially in

picture-naming tasks, and (c) the order of acquisition is computationally equivalent to an

extreme case of FT. Although this last point might seem difficult to understand a priori, it

will be clarified below by examining how FT and the order of entry of the items have been

operationalized in the different simulations performed in the AoA field (Ellis & Lambon

Ralph, 2000; Zevin & Seidenberg, 2002) and in our current connectionist simulations

described below.

On the basis of this theoretical framework, we suggest that FT provides a theoretical

framework allowing a finer (because modulated) analysis of the empirical data. Another pos-

sible reason why FT has not given rise to many empirical studies is that the effect of FT was

obtained in a very specific situation (involving very few critical items as we shall describe

below) simulating word reading. However, following Lambon Ralph and Ehsan’s (2006)

work, it remains now clear that word reading may not be an ideal context for the observation
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of AoA effects. We will therefore show that FT theory is able to simulate AoA effects with

the same reliability as Lambon Ralph and Ehsan (2006) achieved in their picture-naming

tasks (and even more precisely in the sense that we can modulate these AoA effects).

In this unified theoretical framework, although AoA is not considered an outcome vari-

able1 determined by FT as suggested by Zevin and Seidenberg (2002), the two independent

variables are intrinsically related. It is important to stress that the approach we have fol-

lowed is original because we explicitly take account of (a) the frequency trajectory of the

items as a function of (b) their order of introduction into the learning situation as operation-

alized by Lambon Ralph and Ehsan (2006), and (c) the kinds of mappings that exist between

the items (and especially arbitrary mappings which simulate picture-naming tasks, i.e., the

most common situation in which age-limited learning effects emerge), as well as (d) the

influence of the most frequently represented items in natural language, namely flat items

(Monaghan & Ellis, 2010). To date, and including even the most recent AoA studies (e.g.,

Dent, Johnston, & Humphreys, 2008; Raman, 2006), the frequency trajectory concept has

rarely been taken into account in the investigation (or discussion) of AoA effects, and in

some cases it has simply been claimed to be somewhat equivalent to AoA (Levelt, Roelofs,

& Meyer, 1999; Moore, 2003).

We differentiate the theoretical order of acquisition of the encounters, which is an objec-

tive independent variable, from the empirical measures of AoA (e.g., adult-rated AoA

norms), which are much more difficult to encode and are sometimes a source of controversy

(Bonin et al., 2009). More precisely, although there has been little discussion concerning

‘‘theoretical order ⁄ AoA,’’ that is to say the idea that there is an objectively identifiable

moment ⁄ age at which the different words of a language are acquired, there has been consid-

erable debate concerning how to operationalize the ‘‘theoretical AoA’’ for words. The mea-

sures used to operationalize the ‘‘theoretical AoA’’ for words, which are either subjective

AoA norms collected from adults or so-called ‘‘objective’’ AoA norms (a misleading term,

in our opinion) derived from children’s performances, have attracted significant criticism

because they have been given the status of independent variables (Bonin et al., 2009; Zevin

& Seidenberg, 2004). This does not mean that theoretical AoA (and, of course, subjective

AoA) is not influenced by other factors, such as frequency of exposure and memory

resources. However, this is the case for virtually all psychological variables. For instance, in

the same way, as in studies investigating the effect of memory on IQ, memory itself can be

influenced by other factors such as attention or perceptual fluency. This does not mean that

it is not possible to investigate the effect of memory on IQ. Therefore, in this study, we do

not deny the status of theoretical AoA as independent variable. Instead, we show that FT is

a more precise way to operationalize ⁄ measure this concept than, for instance, the subjective

adult AoA norms.

Fig. 1A illustrates a theoretical but objective AoA as an independent variable. If we rep-

resent time along an axis as in Fig. 1A, each word is objectively learned during a specific

period of time and this information represents an objective independent variable.

As mentioned above, the problem with AoA is that ‘‘objective AoA,’’ which is obviously

an independent variable, is very difficult to encode. The debate between FT and AoA has

emerged because some measurements of ‘‘subjective AoA,’’ that is, a mean of subjective
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ratings corresponding to participants’ estimates of the age at which they think they acquired

words, are more similar to outcome variables than to independent variables (Bonin et al.,

2009). Moreover, ‘‘objective AoA’’ as currently encoded in the literature suffers from simi-

lar problems (Bonin et al., 2009). Nonetheless, despite these technical difficulties in encod-

ing the order of acquisition of the encounters, this does not mean that AoA does not exist as

a real independent variable. Therefore, this study will show that FT (a) is an effective way

of attenuating the problem of the encoding of the encounters and (b) is based on the same

processes of synaptic entrenchment as order of acquisition but provides more information

than order of acquisition. As shown in Fig. 1, order of acquisition is a unique, discrete, one-

dimensional measure, whereas FT is an evolutive, continuous, two-dimensional measure.

As a consequence, although AoA simply encodes the time at which a specific item is learned

(Fig. 1A), FT encodes this information together with the amount of exposure to the items. It

is therefore possible to encode both items of information in the two-dimensional space

represented by time on the X-axis and the amount of exposure on the Y-axis (Fig. 1B).

The above explanation makes it clear that FT should not be viewed as opposed to AoA

but instead as complementary to it. FT indicates the amount of exposure to the encounters at

different periods of life. As illustrated in Fig. 1B, certain words are frequently encountered

during childhood (‘‘fairy’’ and ‘‘giant’’) and less so in adulthood, while the opposite is true

for other words (‘‘tax’’) and the frequency of exposure to yet other words remains stable

over the life span; that is to say, they are equally rare (or frequent) in both childhood and

adulthood. By means of connectionist simulations, we will show here that this theoretical

framework leads to AoA effects that are qualitatively similar, while also permitting quantitative
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Fig. 1. (A) Objective age of acquisition encoded in the one-dimensional space provided by time. (B) Objective

frequency trajectories encoded in the two-dimensional space provided by time and the amount of exposure to the

items. This figure illustrates order of acquisition and frequency trajectories concepts, but it is not based on the

real values of ‘‘fairy,’’ ‘‘school,’’ and ‘‘tax’’ words.
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modulation, to those obtained in simulations in which the order of entry alone is taken into

account. We should observe that early acquired patterns are better encoded than late

acquired patterns in the case of arbitrary but not systematic or quasi-systematic mappings.

However, FT is not a one-dimensional, discrete variable (that can be specified by the time at

which a specific word was learnt), but a two-dimensional, continuous variable defined by

the frequency of the encounters at different periods of life. FT should therefore provide us

with a better quantification of AoA effects than the order of introduction of the encounters.

However, to ensure a fair comparison of the two factors, the methodological differences

between Ellis and Lambon Ralph (2000) and Zevin and Seidenberg (2002) are reviewed to

conduct the same computational analysis on the two types of independent variable within

this theoretical framework.

4. Methodological and theoretical differences between FT and AoA computational
studies

First, Ellis and Lambon Ralph (2000), Lambon Ralph and Ehsan (2006), Monaghan and

Ellis (2010), and Zevin and Seidenberg (2002) did not use the same connectionist networks

to test their hypotheses. Ellis and Lambon Ralph (2000) and Lambon Ralph and Ehsan

(2006) used a standard back-propagation network. This algorithm is a very widespread and

standardized algorithm used for a wide variety of cognitive processes such as language

(Ellis & Lambon Ralph, 2000), as well as memory (French, 1999), visual recognition

(Mermillod, Bonin, Mondillon, Alleysson, & Vermeulen, 2010; Mermillod, Vermeulen,

Lundqvist, & Niedenthal, 2009), and semantic categorization (McClelland, McNaughton, &

O’Reilly, 1995). The neural network used by Zevin and Seidenberg (2002) differed in some

major specific respects from the standard back-propagation algorithm. For example, Zevin

and Seidenberg (2002) included cleanup units (Hinton & Shallice, 1991) that mediate con-

nections within the phonological unit layer. These feedback connections between the phono-

logical and cleanup units create a dynamic system called an attractor network that settles

into a stable pattern over time (Harm & Seidenberg, 1999). However, an attractor network,

like the age-limited learning effects themselves, is intrinsically differentially affected by the

‘‘sensitivity-stability’’ dilemma (Hebb, 1949), namely the question of how to ensure that a

memory model is simultaneously sensitive to, but not disrupted by, new inputs. Therefore, a

direct comparison between Zevin and Seidenberg (2002) and Ellis and Lambon Ralph

(2000) is not possible as Zevin and Seidenberg (2002) used cleanup units, whereas Ellis and

Lambon Ralph (2000) did not.

Second, Ellis and Lambon Ralph (2000), Lambon Ralph and Ehsan (2006), and Zevin

and Seidenberg (2002) used very different procedures to investigate the computational basis

of AoA. One specific characteristic of Zevin and Seidenberg’s (2002) simulations is that

they included background items. Of the 2,891 items that constituted the training corpus,

only 108 items were critical items whose frequency trajectories were manipulated. The

remaining 2,783 background items improved the learning of the associative function linking

input–output units. As mentioned by Monaghan and Ellis (2010): ‘‘A psychologically
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plausible developmental model of reading cannot include huge numbers of background
items trained from the outset, as this runs quite contrary to the developing reader’s experi-
ence’’ (p. 12), Monaghan and Ellis (2010) argued that it was possible that the neural net-

work generalized experience from the background items to critical items and that this

process could therefore mask important AoA effects in their simulations. Although Zevin

and Seidenberg (2002) used background items, both Ellis and Lambon Ralph (2000) and

Lambon Ralph and Ehsan (2006) investigated the influence of age-limited learning effects

on different types of input–output mapping, but without background items. It is worth stress-

ing that AoA effects were obtained by Zevin and Seidenberg (2002) only when background

items were removed from the simulations and for critical items having very few neighbors

in quasi-systematic simulations (arbitrary relationships were not tested in their model).

Therefore, an important methodological difference resulted from the use of what Ellis and

Lambon Ralph (2000) and Lambon Ralph and Ehsan (2006) have defined as ‘‘arbitrary

mappings.’’ Zevin and Seidenberg (2002) used ‘‘critical’’ items having few neighbors,

namely words sharing similar phonological properties, to manipulate arbitrary mappings,

whereas the simulations performed by Lambon Ralph and Ehsan (2006) involved com-

pletely arbitrary mappings (it should be remembered that such simulations are thought to

approximate to picture naming, which involves arbitrary relationships between semantic

codes and names). Thus far, and to our knowledge, there is no evidence that the small FT

effect found by Zevin and Seidenberg (2002) in their modeling of word reading applies to

the modeling of picture naming as proposed by Lambon Ralph and Ehsan (2006).

Third, we shall demonstrate that the findings reported by Lambon Ralph and Ehsan

(2006), on the one hand, and Zevin and Seidenberg (2002), on the other, are theoretically

different but not intrinsically opposed. We shall provide evidence that frequency trajectory

can lead to similar predictions, and more important, are based on exactly the same properties

of the neurally inspired learning mechanisms in parallel distributed processing (PDP) mod-

els. It is important to note that, in the following simulations, we have included items having

a stable frequency trajectory. This point is far from trivial and represents an important base-

line at the methodological level. Moreover, apart from the fact that these items can be taken

as baseline items to improve the indexing of the true influence of items with decreasing or

increasing frequency trajectories, they also represent a more ‘‘natural case’’ of what actually

occurs in natural language. It is important to take account not only of the two types of fre-

quency trajectories low-to-high frequency (‘‘tax-like words’’) and high-to-low frequency

(‘‘fairy-like words’’). Real language contains only very few of these items, which represent

a rather extreme case of the frequency trajectories exhibited by words in real language. As

pointed out by Monaghan and Ellis (2010), most words that are early learned retain the rela-

tive frequency. For instance, these authors noted that the Educator’s Word Frequency Guide

(Zeno, 1995) lists 5,273 words which occur in the reading material suitable for Grade 1

readers with a frequency of 2 per million or more. Importantly, they reported a correlation

of .812 between the frequency of those words in Grade 1 and their frequency in adult-level

material (Grade 13 + ). Thus, one of the important aspects of this study is the inclusion of

stable frequency trajectories in the simulations. Due to this inclusion of items with stable

trajectories, which represent the most frequent case of ‘‘early acquired’’ items, our
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implementation of frequency trajectory does not reduce to an extreme case. Fourth, and

directly related to the previous point, in our simulations we were careful to equalize cumula-

tive frequency when investigating the FT effect. Finally, the interaction between FT and

cumulative frequency was investigated.

We should emphasize that these differences constitute methodological differences that

make it difficult (but not impossible) to perform certain comparisons among these studies of

FT, on the one hand, and AoA on the other. However, there is a more important point that

needs to be made at the theoretical level: Using a specific type of attractor network, Zevin

and Seidenberg (2002) obtained a weak effect of FT for critical items that was limited to

quasi-systematic mappings and occurred only when (a) background items were removed

and (b) these critical items did not have neighbors. It is fair to say that these findings provide

little support for a theory that sets out to improve on AoA theory. Why did the authors find

such a small FT effect? To summarize, Zevin and Seidenberg (2002) provided evidence of a

small effect of FT under very specific conditions because their simulation concentrated on

word reading. However, Lambon Ralph and Ehsan (2006) reported that age-limited learning

effects do not occur in word reading but do appear in picture-naming tasks. In other words,

this study helps (a) show that FT is not a competing theory but an evolution of AoA theory

(which was initially based on the order of acquisition of the items), and as such should be

viewed as complementary to it, and it (b) provides computational evidence that FT gives

rise to an age-limited learning effect in ‘‘picture-naming-like tasks’’ by investigating the

effect of FT in a systematic and manner comparable to that adopted ⁄ initiated by Ellis and

Lambon Ralph (2000).

5. Simulation 1: Frequency trajectory and AoA effects in artificial neural systems for
arbitrary mappings

Simulation 1 tested the influence of frequency trajectories on arbitrary relationships

between input and output units. The results of Lambon Ralph and Ehsan (2006), obtained

within the theoretical framework of AoA, suggest that the nature of the relationships

between input and output patterns is crucial for the emergence of age-limited learning

effects on neural network performance. Thus, although age-limited learning effects should

emerge in tasks requiring the involvement of arbitrary mappings, for example, in the case of

face or object naming, few or no age-limited learning effects should be found in tasks

requiring the involvement of systematic or quasi-systematic representations. Moreover, this

pattern of findings has indeed been observed in the case of behavioral data (Bonin et al.,

2004). In Lambon Ralph and Ehsan’s (2006) simulations, an interaction between order of

introduction and the lexical frequency of the patterns was observed. As far as the interaction

between order of introduction and frequency of exposure is concerned, these simulations

showed that the effect of order ⁄ AoA was greater for low-frequency than for high-frequency

patterns (and this pattern was especially marked for the arbitrary patterns). Although this

type of pattern is consistent with certain picture naming data (e.g., Barry, Morrison, & Ellis,

1997), an in-depth study has revealed that such interactions are rarely observed in the case
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of picture naming latencies (Cuetos, Alvarez, Gonzales-Nosti, Méot, & Bonin, 2006).

Although Lambon Ralph and Ehsan (2006) identified a significant effect of the order of

introduction of the patterns when the relationships between input and output patterns were

arbitrary, Zevin and Seidenberg (2002) did not find a reliable effect of frequency trajectory

on network performance, when cumulative frequency was equalized across each training

regime, and the overlap between the early and late training regime was eliminated (Simula-

tion 4). According to these authors, what is learned from early items can be generalized to

later items by means of associative learning functions inherent to the word reading task.

However, as stated above, the general framework used by Zevin and Seidenberg (2002) is

based on word reading tasks, whereas Lambon Ralph and Ehsan (2006) have shown that

age-limited learning effects primarily occur in picture-naming tasks. In this study, we wish

to show that frequency trajectories reveal similar and in the sense that they are modulated,

more precise age-limited learning effects than the order of acquisition of the items in pic-

ture-naming tasks (using a similar methodology and similar material to those employed by

Lambon Ralph & Ehsan, 2006). Moreover, we will show that these effects are based on the

same neurally inspired processes as those responsible for the most recent results obtained,

within the framework of AoA theory, by Lambon Ralph and Ehsan (2006) and to suggest

that FT is, therefore, a more sophisticated form of the order of acquisition.

5.1. Material and procedure

The connectionist network was a standard three-layer back-propagation neural network.

It was in all respects identical to the one used by Lambon Ralph and Ehsan (2006), namely

a 100–50–100 neural network architecture. Like Ellis and Lambon Ralph (2000), and

Lambon Ralph and Ehsan (2006), we did not include background items in the simulation

relating to arbitrarily mapped items. For these items, the input and output vectors were 100

randomly generated binary vectors.

As can been seen from Fig. 2A, these 100 vectors were subdivided into five categories:

(a) late acquired patterns, referred to as the ‘‘late’’ set, (b) decreasing FT patterns or the

‘‘decreasing’’ set (‘‘fairy-like words’’), (c) stable FT patterns or the ‘‘stable’’ set (‘‘school-

like words’’), (d) increasing FT patterns or the ‘‘increasing’’ set (‘‘tax-like words’’), and

(e) the ‘‘early acquired’’ patterns or the ‘‘early’’ set).

At time 1, the first 20 vectors (late acquired patterns) were encoded with a frequency of

1.1%, (each vector was presented once at each iteration of the neural network), the next 20

vectors (increasing FT) with a frequency of 11% (each vector presented 10 times at each

iteration of the neural network), the next 20 vectors (stable FT) with a frequency of 22%

(each vector presented 20 times at each iteration of the neural network), the next 20 vectors

(decreasing FT) with a frequency of 33% (each vector presented 30 times at each iteration

of the neural network), and the remaining 20 vectors (early acquired patterns) with a fre-

quency of 33% (each vector presented 30 times at each iteration of the neural network). The

first training period consisted of 1,000 epochs. Therefore, there were 91 presentations in

each epoch and 1,000 epochs in each training period. During the second training stage of

1,000 epochs, early and late acquired patterns were encoded with a frequency of 1.1% (once
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at each iteration) and increasing, stable and decreasing FT with a frequency of 32% (each

vector was presented 20 times at each iteration of the neural network). Finally, during the

last training stage of 1,000 epochs, the first 20 vectors (late acquired patterns) were each

encoded with a frequency of 33% (each vector was presented 30 times at each iteration of

the neural network), the next 20 vectors (increasing FT) with a frequency of 33% (each vec-

tor presented 30 times at each iteration of the neural network), the next 20 vectors (stable

FT) with a frequency of 22% (each vector presented 20 times at each iteration of the neural

network), the next 20 vectors (decreasing FT) with a frequency of 11% (each vector pre-

sented 10 times at each iteration of the neural network), and the remaining 20 vectors (early

acquired patterns) with a frequency of 1.1% (each vector was presented once at each itera-

tion of the neural network). It should be noted that we presented early acquired patterns

once at times 2 and 3 to prevent catastrophic forgetting. To compute an average accuracy

(A)

Time 1 Time 2 Time 3

Late 1 1 30
Increasing trajectory (e.g. tax) 10 20 30
Stable trajectory (e.g. school) 20 20 20
Decreasing trajectory (e.g. fairy) 30 20 10

Early 30 1 1
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Fig. 2. Frequency trajectories (A). Frequency trajectory effects on average accuracy (B) and Sum of Squared

Errors (C) for arbitrary items.
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and the Sum of Squared Errors (SSE) of the network, we applied this training ⁄ test procedure

for 20 runs. All occurrences are presented in Fig. 2A. To test the effect of FT independently

of cumulative frequency, the cumulative number of occurrences for each FT was equated

(60 occurrences for each FT condition). ‘‘Early’’ and ‘‘Late’’ patterns could not have the

same cumulative frequency because they appeared only once in the training phase but were

presented during the corresponding training phase with the same frequency as the ‘‘high-to-

low’’ and ‘‘low-to-high’’ FT, respectively.

The underlying idea was to permit a direct comparison between FT and the order of intro-

duction of the encounters to show that the order of acquisition, as operationalized in previ-

ous simulations (Ellis & Lambon Ralph, 2000; Lambon Ralph & Ehsan, 2006), can be

considered an extreme case of FT (i.e., as occupying a different point on the same contin-

uum). We therefore included early and late acquired patterns to compare their influence with

that of FT. We decided to use a slightly larger number of epochs (1,000 instead of 700

epochs) than in previous simulations (Ellis & Lambon Ralph, 2000; Lambon Ralph &

Ehsan, 2006) to ensure stable results within a more complex experimental design involving

five training regimes and three points during development.

5.2. Results

We used the average accuracy (1-number of errors) and the SSE as the dependent vari-

ables (Ellis & Lambon Ralph, 2000; Lambon Ralph & Ehsan, 2006; Zevin & Seidenberg,

2002). An output item produced by the neural network was defined as correct if the total dis-

crepancy between the expected output and the observed output did not exceed 10%.

We conducted an anova on the average accuracy rate and SSE with Training Period

(Time 1, Time 2, and Time 3) x Type of (FT) set (Late, Increasing, Stable, Decreasing, and

Early) as within-subject factor.

5.2.1. FT effects on accuracy
The statistical analysis revealed a significant effect of Type of set, F(4, 76) = 411.6,

MSE = 0.02, p < .001, as well as a significant effect of the Training Period, F(2, 38) = 7.8,

MSE = 0.0004, p < .001. The interaction between Type of set and Training period was sig-

nificant, F(8, 152) = 15.8, MSE = 0.0004, p < .001, thus indicating that FT has a different

effect depending on the training period (Fig. 2B).

Pairwise comparisons revealed that, at Time 1 (the ‘‘childhood’’ level), the late set pro-

duced a significantly lower accuracy than the increasing set, F(1, 19) = 334.6, MSE = 0.01,

p < .001. Moreover, we also observed a significantly lower accuracy for the increasing set

than for the stable set, F(1, 19) = 25.2, MSE = 0.01, p < .001, and a lower accuracy for the

stable set than for the decreasing set, F(1, 19) = 24.1, MSE = 0.006, p < .001. However, we

did not observe any significant difference between the decreasing set and the early set,

F < 1. At Time 1, the neural network performance reflected only a frequency effect: The

late set was presented only once and produced a lower level of accuracy than the increasing,

stable, decreasing, and early sets presented 10, 20, 30, and 30 times, respectively. Thus, the

first training period simply confirmed that the neural network was sensitive to the frequency
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of the encounters. We obtained the same significant differences at Time 2 (the ‘‘teenage’’

level).

More interesting results were found at Time 3 (the ‘‘adult’’ level). Accuracy was signifi-

cantly lower for the late set than for the increasing set, F(1, 19) = 376.88, MSE = 0.008,

p < .001, and also significantly lower for the increasing set than the stable set,

F(1, 19) = 24.78, MSE = 0.008, p < .001, and for the stable set than for the decreasing set,

F(1, 19) = 17.18, MSE = 0.006, p < .001. The difference between the decreasing and early

sets was not significant (F < 1). It should be noted here that the accuracy of the neural net-

work was only 10% for late patterns. Such patterns constituted an extreme case with virtu-

ally no occurrences of the corresponding items in the first two training phases. This extreme

case probably does not occur in real language. This helps to highlight the odd nature of the

operationalization of the order of acquisition (which actually constitutes a very extreme case

compared with frequency trajectories). However, it should also be noted that this result

depends on other factors like the proportional frequency of late items compared with other

items. It is possible to conjecture that a higher level of accuracy might be observed using

the more realistic FT factor.

Taken together, the results show that the advantage of early acquired items observed in

the early training stage persisted in the final training period despite a perfectly symmetrical

inversion of the frequency of exposure.

5.2.2. FT effects on sum square error
As SSE represents a more precise variable, enabling us to measure the distance between

expected outputs and observed outputs (Fig. 2C), we conducted the same anova on SSE as

had previously been performed for the average error rate. The anova revealed a significant

effect of Type of set, F(4, 76) = 975.1, MSE = 0.22, p < .001, as well as a significant effect

of the Training period, F(2, 38) = 433.1, MSE = 0.006, p < .001. The interaction between

Type of set and Training period was significant, F(8, 152) = 291, MSE = 0.006, p < .001.

More precisely, and as far as Time 1 is concerned, we observed a higher SSE on late

acquired items than on increasing FT items, F(1, 19) = 969.6, MSE = 0.16, p < .001. Once

again, at the end of Time 1, this difference simply reflected the fact that the neural network

had had less exposure to ‘‘late’’ items than ‘‘increasing’’ items. We also observed a signifi-

cantly higher SSE on ‘‘increasing’’ items than on ‘‘stable’’ items, F(1, 19) = 41.2,

MSE = 0.07, p < .001, and a higher SSE for stable items than for decreasing items, F(1,

19) = 38, MSE = 0.05, p < .001. We did not observe any significant difference between

decreasing items and early items (F < 1). However, this finding is not surprising given that

both sets were presented with equal frequencies at Time 1.

At Time 2, the same significant differences were found. More interestingly, however,

they were also observed at Time 3, thus showing that this effect of better training on the

early set persisted. Pairwise comparisons revealed poorer training which resulted in a higher

SSE on the late set than on the increasing set, F(1, 19) = 927.2, MSE = 0.09, p < .001, but

also a significantly higher SSE on the increasing set than on the stable set, F(1, 19) = 35.1,

MSE = 0.05, p < .001, and a higher SSE for the stable set than the decreasing set, F(1,
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19) = 30.4, MSE = 0.06, p < .001. As in the first and second training period, we did not

observe a significant difference between the decreasing and early sets, F < 1.

5.2.3. FT effects across time
This analysis examined the effect of the different types of FT across time (from Time 1

to Time 3). Concerning the late set, we observed a significant improvement in the effect of

learning on SSE over time, F(1, 19) = 386.04, MSE = 0.04, p < .001. We observed the

same effect on the increasing set, F(1, 19) = 42.89, MSE = 0.005, p < .001 and stable set,

F(1, 19) = 15.03, MSE = 0.001, p < .01. More surprisingly, we also observed a significant

reduction of SSE for the decreasing set, F(1, 19) = 4.73, MSE = 0.002, p < .05 despite the

reduced exposure to the items. We even observed a marginally significant reduction of SSE

for the early set, F(1, 19) = 4.1, MSE = 0.002, p = .057, despite the drastic reduction in the

level of exposure.

5.3. Discussion of Simulation 1

An effect of the frequency trajectory variable was found on the neural network perfor-

mance when the mappings between the input and output units were arbitrary. Compared

with previous connectionist data, this finding means that it is possible to obtain an age-lim-

ited learning effect on arbitrary items without necessarily having to refer to the order of

introduction of the encounters (Ellis & Lambon Ralph, 2000; Lambon Ralph & Ehsan,

2006). Instead, this simulation shows that similar effects can be obtained through a manipu-

lation of the frequency trajectories of the items, as suggested by Zevin and Seidenberg

(2002). Nonetheless, Zevin and Seidenberg (2002) did not test the effect of FT on arbitrary

relationships simulating picture naming. To our knowledge, this is the first computational

evidence that FT is able to produce AoA effects in picture naming-like tasks but also that

FT can be operationalized as a continuous variation in the order of acquisition. This effect is

consistent with AoA effects observed in behavioral picture naming data (Bonin et al., 2004)

when cumulative frequency is controlled for. A key aspect of the data from Simulation 1 is

that the training frequencies at Time 1 dominated the outcome, not only at the end of this

period but also at the end of the periods corresponding to Times 2 and 3. At all three times,

the best performance was observed on the Early and Decreasing sets, followed by Stable

and then Increasing, with Late being the worst set by quite some margin, even after Time 3

when the frequency of the items had risen from 1 to 30. Thus, it remains clear that once the

network structure has been formed through early experience, later changes have relatively

little effect, a phenomenon that is usually referred to as ‘‘entrenchment.’’ Also, once an item

has become established through early experience, little subsequent exposure is required to

maintain its representation (see also Ellis & Lambon Ralph, 2000; Simulation 12). In line

with previous data (Ellis & Lambon Ralph, 2000; Munro, 1986; Zevin & Seidenberg, 2002),

these findings suggest that age-limited effects arise from a generic aspect of learning; that is

to say, the plasticity of the network decreases with learning. We shall return to the issue of

plasticity in the General Discussion. The consequence of the reduction of network plasticity

is that the point during learning at which items are first encountered has a long-term and
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stable effect on behavioral data. This is also confirmed by the current analysis of the differ-

ent FT across time. These findings clearly show a strong entrenchment effect that was pow-

erful enough to reduce SSE over time even despite the drastic reduction in the level of

exposure for the early acquired items.

6. Simulation 2: Frequency trajectory effects in artificial neural systems for
quasi-systematic (2A) and systematic (2B) mappings

Two further simulations were run using new patterns of vectors having (a) a quasi-sys-

tematic relationship between the input and output layers (Simulation 2A) and (b) systematic

input–output relationships (Simulation 2B). As in the previous simulation, we used the input

and output patterns provided by Lambon Ralph and Ehsan (2006). The frequency trajectory

of the items was manipulated, while their cumulative frequency was held constant. These

data instantiate the quasi-regular mapping of English or French. This context is thought to

operationalize and simulate reading aloud (or spelling-to-dictation) in alphabetic languages.

In the light of the findings reported by Zevin and Seidenberg (2002), no reliable effect of

frequency trajectory was predicted on neural network performance with a quasi-systematic

and a systematic coding of the input–output relationship (except in one very specific condi-

tion, namely critical items without background items). This represents a clear contrast to

Lambon Ralph and Ehsan’s (2006) study, which obtained small but significant age-limited

learning effects for quasi-systematic relationships in a simulation that used the order of

introduction of the items as independent variable. In Simulation 2B, we expected the regu-

larities of the input–output patterns to completely suppress age-limited learning effects in

the artificial neural network.

6.1. Material and procedure

The network was identical to the one used in Simulation 1. For the quasi-systematic items

(Simulation 2A), we used the structure relationship provided by Lambon Ralph and Ehsan

(2006). The quasi-regular mappings were created by dividing the 100 unit vectors into three

sections (33, 34, and 33) to represent a CVC-like word. We used the identical abstract

patterns for 10 consonant and 10 vowel components generated by Lambon Ralph and Ehsan

(2006) to produce a hundred representations that were formed by joining the CVC patterns

using a Latin-square type combination. In other words, each input vector Cn Vn Cn was asso-

ciated with an output vector Cn Vn Cn+1. Likewise, all the 10 consonant and vowel patterns

were used 10 times each in both the onset and offset positions. The frequency trajectories of

the encounters were identical to Simulation 1.

Turning to Simulation 2B, in the same way as for the quasi-systematic data, 100 unit vec-

tors were created to form CVC-like words based on the 10 consonant and 10 vowel compo-

nents generated by Lambon Ralph and Ehsan (2006). The only difference compared with

Simulation 2A was that each input vector Cn Vn Cn was associated with itself as an output

vector. In other words, the connectionist network was an auto-associator neural network that
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permitted the reproduction of perfectly predictable input–output correspondences (as in

Turkish; see Raman, 2006). Frequency trajectories were strictly identical to Simulation 1.

6.2. Results

As far as accuracy is concerned, the quasi-systematic and systematic relationships pro-

duced a clear ceiling effect resulting in 100% correct responses for each FT and early or late

AoA items, thus clearly indicating that this new associative procedure was easier than that

used in Simulation 1 (as reported by Lambon Ralph & Ehsan, 2006 on the basis of the order

of acquisition of the items). We therefore ran an anova on SSE, which enabled us to obtain

a more precise analysis of the results (because SSE is a continuous variable, which makes it

possible to describe very small differences).

We conducted an anova on SSE (Fig. 3) with Training period (Time 1, Time 2, and Time

3) x Type of sets (Late, Increasing, Stable, Decreasing, and Early) as within-subject variable

on 20 runs of the training ⁄ test procedure (equivalent to 20 different subjects).
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Fig. 3. Frequency trajectory effect on average Sum of Squared Errors for systematic (A) and quasi-systematic

items (B).
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6.3. Simulation 2A: Quasi-systematic items

The statistical analysis revealed a significant effect of Type of sets, F(4, 76) = 476.8,

MSE = 0.0001, p < .001, as well as a significant effect of the Training period, F(2,

38) = 1353.96, MSE = 0.0001, p < .001. The interaction between Type of sets and Training

period was significant, F(8, 152) = 503.7, MSE = 0.0001, p < .001.

More precisely, and as can be seen from Fig. 3A, pairwise comparisons revealed a signif-

icant, albeit very weak, effect of frequency at the end of Time 1. The late set produced

higher SSE than the increasing set, F(1, 19) = 413.2, MSE = 0.0001, p < .001, and we

observed a significant effect of the increasing set compared with the stable set, F(1,

19) = 596.4, MSE = 0.0001, p < .001, as well as of the stable compared with the decreasing

set, F(1, 19) = 299.8, MSE = 0.0001, p < .001. This effect was not significant for the

decreasing compared with the early sets. At the end of the training regime (Time 3), we

observed a drastic reduction of the SSE for all the types of sets. However, albeit very small,

the difference between late and increasing sets was significant, F(1, 19) = 303.1,

MSE = 0.0001, p < .001, as was the difference between the increasing and stable sets, F(1,

19) = 38.7, MSE = 0.0001, p < .001. However, we have to note the striking fact that,

although we observed a frequency effect at the end of Time 1, the quasi-systematic relation-

ship between the input and output units produced only very tiny SSE differences between

the different training conditions, and especially at the end of the training regime (Time 3).

In other words, such small differences could probably not be transposed to the behavioral

level. There was a drastic reduction in SSE on quasi-systematic items compared with that

observed for arbitrary items, F(1, 291) = 621.37, MSE = 99.07, p < .001.

6.3.1. FT effects across time
Concerning the late set, we observed a significant effect of improvement of learning on

SSE as exposure to this set increased over time, F(1, 19) = 646.9, MSE = 0.001, p < .001.

We observed the same effect on increasing FT, F(1, 19) = 3257.9, MSE = 0.001, p < .001

and stable FT, F(1, 19) = 7620.3, MSE = 0.001, p < .001. As for arbitrary items, we also

observed a significant reduction of SSE for decreasing FT, F(1, 19) = 6000.3,

MSE = 0.001, p < .001, despite the reduction of exposure to these items, as well as a signifi-

cant reduction of SSE on early acquired items, F(1, 19) = 2538.4, MSE = 0.001, p < .001,

again despite the drastic reduction in the level of exposure to these items.

6.4. Simulation 2B: Systematic items

We observed a significant effect of Type of sets, F(4, 76) = 1147.3, MSE = 0.0001,

p < .001, a significant effect of the Training period, F(2, 38) = 3293.9, MSE = 0.0001,

p < .001, and a significant interaction between Type of sets and Training period, F(8,

152) = 1112.7, MSE = 0.0001, p < .001. As in the case of quasi-systematic relationships,

pairwise comparisons for Time 1 revealed that the late set produced higher SSE than the

increasing set, F(1, 19) = 920.2, MSE = 0.0001, p < .001, a significant effect of increasing

set compared with the stable set, F(1, 19) = 332.4, MSE = 0.0001, p < .001, and also a
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significant effect of the stable set compared with the decreasing set, F(1, 19) = 139.2,

MSE = 0.0001, p < .001. The difference between decreasing and early sets was not signifi-

cant (F < 1). We also observed a substantial reduction of the SSE at the end of Time 3.

Again, even though very small, the difference between the late and increasing sets was sig-

nificant, F(1, 19) = 751.7, MSE = 0.0001, p < .001, as was the difference between the

increasing and stable sets, F(1, 19) = 12.4, MSE = 0.0001, p < .01.

6.4.1. FT effects across time
As for the quasi-systematic relationships, we again observed a significant effect of

improvement of learning on SSE as exposure to the late set increased over time, F(1,

19) = 1489.1, MSE = 0.001, p < .001. The same findings were obtained for the increasing

set, F(1, 19) = 3,887.2, MSE = 0.001, p < .001 and the stable set, F(1, 19) = 6,256.8,

MSE = 0.001, p < .001. We also observed a significant reduction of SSE for the decreasing

set, F(1, 19) = 8,539.5, MSE = 0.001, p < .001, despite the reduction of exposure to these

items, as well as a significant reduction of SSE on the early set, F(1, 19) = 3,598,

MSE = 0.001, p < .001. Once again, this improvement occurred despite the drastic reduc-

tion in the level of exposure to these latter two sets (Fig. 3B).

6.5. Discussion of Simulations 2A and 2B

To summarize the findings from Simulations 2A and 2B, the network performance on

items having quasi-systematic or systematic mappings was much better than when it was

given the task of learning items having arbitrary mappings (Simulation 1). Learning contin-

ued to take place across Times 2 and 3, and all the sets had been learned well by the end of

Time 3. Even the Late set was well learned after Time 3 after its frequency had increased

from 1 to 30. The findings obtained for quasi-systematic and systematic mappings are con-

sistent with previous behavioral (Bonin et al., 2004; Zevin & Seidenberg, 2004) and com-

putational studies (Lambon Ralph & Ehsan, 2006; Zevin & Seidenberg, 2002), thus

showing that no age-limited learning effects emerge when reading aloud (or spelling-to-dic-

tation) in alphabetic languages in which grapheme-to-phoneme (or phoneme-to-grapheme)

correspondences are perfectly predictable. Early in training, the network performance is

better on items that are trained more often; that is to say, a frequency effect occurs during

the initial phase of the training regime. At a computational level, we found a significant but

tiny difference only at the level of SSE, thus resulting in a higher error rate for the late

acquired or the increasing FT items. However, it should be noted that we did not find any

AoA effect on accuracy scores when input–output mapping was systematic or quasi-sys-

tematic. These results make it possible to reconcile the previous data reported by Lambon

Ralph and Ehsan (2006) with those obtained by Zevin and Seidenberg (2002). Our data

indicate that age-limited learning effects are drastically reduced by quasi-systematic or sys-

tematic relationships, even though an examination of the small SSE errors still makes it

possible to observe this type of tiny AoA effect. Moreover, it is important to point out that,

although we observed a small difference on SSE, there was virtually no effect on accuracy.

These results mean that the effect is very small at the computational level (as observed by
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Zevin & Seidenberg, 2002) and is therefore likely to be very difficult to obtain at a behav-

ioral level (Bonin et al., 2004). The findings obtained in Simulations 2A and 2B are com-

patible with the hypothesis that age-limited learning effects are difficult to obtain when the

mappings between input and output units are quasi-systematic (or systematic) as has been

empirically observed in word reading in alphabetic languages such as French (Bonin et al.,

2004), English (Zevin & Seidenberg, 2004), or Italian (Burani, Arduino, & Barca, 2007).

At a computational level, the findings from Simulation 2 suggest that the phenomenon of

plasticity loss previously observed by Munro (1986) might be considerably reduced in com-

ponential representations when cumulative frequency is adequately controlled for. Further-

more, the above simulations show that the theoretical framework provided by FT is able to

simulate results similar to those obtained by Lambon Ralph and Ehsan (2006) on the basis

of order of acquisition.

Taken together, the findings suggest that frequency trajectories are able to simulate the

effect of order of acquisition, while at the same time permitting a better quantification of

age-limited learning effects than the simple order of introduction of the encounters. Our

findings strongly suggest that variations in frequency over time have more of an impact in

networks that process more systematic mappings. However, the frequencies of encounter of

the items can decline over time without affecting the quality of the representations that are

formed by the network, as evidenced by the performance observed on the Early items in

Simulations 2A and 2B.

As the findings obtained for systematic and quasi-systematic relationships are similar and

age-limited learning effects were obtained only when arbitrary mappings were used, we

decided, in a final simulation, to focus on the interaction between frequency trajectory and

cumulative frequency using items having arbitrary mappings.

7. Simulation 3: Interaction of frequency trajectory and cumulative frequency for
arbitrary mappings in connectionist networks

Lambon Ralph and Ehsan (2006) have shown that the order of introduction of the items

and cumulative frequency interact, with the result that the effect of order of introduction on

network performance is greater for low-frequency than for high-frequency items. Moreover,

these authors have also shown that the interaction between the frequency of the patterns and

the order of introduction is stronger, when the mappings between input and output patterns

are arbitrary than when they are systematic or quasi-systematic. Indeed, they found that

order of introduction ⁄ AoA and frequency interacted overall, but that this interaction was

only reliable in the arbitrary mapping simulation.

As far as the behavioral data are concerned, as claimed by Lambon Ralph and Ehsan

(2006), there is a surprising paucity of empirical data concerning the issue of whether AoA

and word frequency interact. The reason may be related to the close relationship between

rated ⁄ objective AoA norms and word frequency measures, which makes it difficult to use a

factorial design. In effect, it is quite difficult to find high-frequency stimuli that are acquired

late in life and low-frequency stimuli that are acquired early because most words acquired
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early are high in frequency and this frequency remains high (Monaghan & Ellis, 2010). As

far as we know, the interaction between word frequency and AoA was first tested by Barry

et al. (1997) in a multiple regression analysis on spoken naming times. These authors found

a reliable interaction, with a larger frequency effect being obtained on late acquired than on

early acquired items. However, this interaction was not obtained using objective AoA

norms, thus suggesting that the interaction may not be robust. Meschyan and Hernandez

(2002) performed a factorial crossing of the AoA and frequency variables, as well as the

delay (0 or 2200 ms) between picture onset and a naming cue, but did not find a significant

interaction between the two variables in immediate naming (i.e., interval 0). In the Lambon

Ralph and Ehsan (2006) study, even though an interaction between word frequency and

AoA was found to affect both picture naming and word reading latencies, the interaction

between word frequency and AoA was not reliable on items. In addition, Chalard, Bonin,

Méot, Boyer, and Fayol (2003), who used different measures of word frequency, did not find

a reliable interaction between the two factors in picture naming latencies in French. Finally,

Cuetos et al. (2006) conducted an extensive study to test the interaction between word fre-

quency and AoA in picture naming latencies and concluded that the modulation of the word

frequency effect as a function of the age ⁄ order of acquisition of the words is not a robust

finding in picture naming performance in adults. To summarize, the behavioral results are

controversial given that some of them indicate an interaction between AoA and cumulative

frequency (Barry et al., 1997; Ellis & Lambon Ralph, 2000; Lambon Ralph & Ehsan,

2006), where others do not (Chalard et al., 2003; Cuetos et al., 2006; Meschyan & Hernan-

dez, 2002). The next simulation investigated this potential interaction within the theoretical

framework of frequency trajectories.

7.1. Material and procedure

The connectionist network was the same three-layer back-propagation neural network

used in Simulations 1 and 2. The input and output vectors were the same 100 binary vectors

generated in Simulation 1. For reasons of clarity, we removed the early and late acquired

sets as Simulation 1 showed that these items behave in a similar fashion to the decreasing

and increasing sets. The first 33 vectors were encoded with a frequency of 16.7% (each

vector was presented once at each epoch), the next 34 with a frequency of 33.3% (each

vector was presented twice at each epoch), and the remaining 33 with a frequency of 50%

during the first step of training (each vector was presented three times at each epoch). Dur-

ing the second and third steps of the training, the frequency trajectory manipulation was

identical to that of Simulations 1 and 2. To obtain two levels of cumulative frequency, high-

frequency (HF) vectors, 1–16, 34–50, and 68–83 were presented to the neural network twice

as frequently as the low-frequency (LF) vectors, with the result that each HF vector was pre-

sented twice, four times or six times at each epoch, respectively. In other words, we used

the same FT and input ⁄ output mapping as in Simulation 1 for LF items and simply multi-

plied the LF frequencies by two to obtain the HF frequencies. As in the previous simula-

tions, this training regime was used for 20 runs. A summary of the cumulative frequency

and frequency trajectory manipulations is provided in Fig. 4A.
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7.2. Results of Simulation 3

We conducted an anova on SSE and average accuracy with Training Period (Time 1,

Time 2, and Time 3), Frequency Trajectory (Increasing, Stable, and Decreasing), and

Cumulative Frequency (High and Low) as within-subject factors.

7.2.1. FT effects on accuracy
The statistical analysis revealed a significant effect of FT, F(2, 38) = 200.8, MSE = 0.02,

p < .001, a significant effect of cumulative frequency F(1, 19) = 116.6, MSE = 0.03, p <

.001, and a significant effect of the training period, F(2, 38) = 26, MSE = 0.0004, p < .001.

Interestingly, the interaction between FT and cumulative frequency was significant,
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Fig. 4. Frequency trajectories and cumulative frequencies (A). Frequency trajectory and cumulative frequency

effect on average accuracy (B) and Sum of Squared Errors (C) for arbitrary items.
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F(2, 38) = 9.22, MSE = 0.03, p < .001, meaning that FT has a different effect depending on

the cumulative frequency of the encounters.

As in Simulation 1, at the end of Time 1, accuracy was significantly higher for the

decreasing low-frequency set (mean accuracy = 0.86) than for the stable low-frequency set

(mean accuracy = 0.64; F(1, 19) = 53.6, MSE = 0.01, p < .001), and the error rate signifi-

cantly lower for the stable low-frequency set than for the increasing low-frequency set

(mean accuracy = 0.44; F(1, 19) = 32.2, MSE = 0.01, p < .001). Turning to the high-fre-

quency items, we observed a lower error rate for the stable set (mean accuracy = 0.93) than

for either the increasing set (mean accuracy = 0.63; F(1, 19) = 141.3, MSE = 0.006,

p < .001) or the decreasing frequency sets (mean accuracy = 0.96; F(1, 19) = 5.5,

MSE = 0.002, p < .05). We obtained the same significant differences at Time 2.

The most important results were those found at Time 3. We observed a significantly

higher accuracy for the decreasing low-frequency set (mean accuracy = 0.85) than for the

stable low-frequency set (mean accuracy = 0.64; F(1, 19) = 49.9, MSE = 0.009, p < .001).

The observed error rate was significantly lower for the stable low-frequency set than for the

increasing low-frequency set (mean accuracy = 0.51; F(1, 19) = 13.6, MSE = 0.01,

p < .01). As far as the high-frequency set is concerned, we observed a lower error rate for

the stable set (mean accuracy = 0.93) than for either the increasing set (mean accu-

racy = 0.66; F(1, 19) = 101.5, MSE = 0.007, p < .001) or for the decreasing frequency set

(mean accuracy = 0.96; F(1, 19) = 4.98, MSE = 0.002, p < .05). However, for both high-

and low-frequency items, the increasing set was correctly recognized by the neural network

significantly less often than the decreasing set, F(1, 19) = 143.5, MSE = 0.006, p < .001

and F(1, 19) = 104.3, MSE = 0.011, p < .001, respectively.

7.2.2. FT effects on SSE
The main effect of cumulative frequency was significant, F(1, 19) = 213.1, MSE = 0.33,

p < .001, with high-frequency items leading to lower SSE than low-frequency items

(Fig. 4B). This effect is similar to the main frequency effect reported by Lambon Ralph and

Ehsan (2006). The main effect of frequency trajectory was also significant,

F(2, 38) = 221.8, MSE = 0.21, p < .001, as was the effect of the Training period, F(2,

38) = 148.1, MSE = 0.002, p < .001. Moreover, the interaction between cumulative

frequency and frequency trajectory at the end of the training period (Time 3) was significant,

F(2, 38) = 8.5, MSE = 0.26, p < .001.

At the end of Time 1, we observed a significantly lower SSE for the low-frequency

decreasing set (mean SSE = 1.03) than for the low-frequency stable set (mean SSE = 1.9;

F(1, 19) = 40.1, MSE = 0.1, p < .001), and a significantly lower SSE was observed for

the low-frequency stable set than for the low-frequency increasing set (mean SSE = 2.54;

F(1, 19) = 58.1, MSE = 0.13, p < .001). Turning to the high-frequency sets, the results

were the same as for the low-frequency sets at the end of Time 1, namely a lower SSE

was observed for the decreasing (mean SSE = 0.38) than for the stable set (mean

SSE = 0.7; F(1, 19) = 175.4, MSE = 0.04, p < .001), where a lower SSE was observed for

the stable set than for the increasing set (mean SSE = 1.6; F(1, 19) = 32.5, MSE = 0.03,

p < .001).
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These differences persisted during both the second and the final training session. At Time

3, a significantly lower SSE was found for the low-frequency decreasing set (mean

SSE = 1.01) than for the low-frequency stable set (mean SSE = 1.84, F(1, 19) = 62,

MSE = 0.11, p < .001). The same difference was also observed between the stable and

increasing sets (mean SSE = 2.26; F(1, 19) = 15.5, MSE = 0.1, p < .001). For the high-fre-

quency set, the SSE was lower on the decreasing (mean SSE = 0.38) than the stable items

(mean SSE = 0.69; F(1, 19) = 32.04, MSE = 0.03, p < .001), and the same significant dif-

ference was observed between the stable and increasing sets (mean SSE = 1.46; F(1,

19) = 119.2, MSE = 0.05, p < .001). The increasing set produced significantly higher SSE

than the decreasing set in the case of both high-frequency, F(1, 19) = 263, MSE = 0.04,

p < .001 and low-frequency items, F(1, 19) = 123, MSE = 0.12, p < .001.

7.2.3. FT effects across time
As for arbitrary items, we again tested the effect of FT over time in this new simulation

but, in this case, for different cumulative frequencies. Concerning high-frequency words,

we observed a significant reduction of SSE from Time 1 to Time 3 for the increasing set,

F(1, 19) = 128.1, MSE = .002, p < .001, as well as for the stable set, F(1, 19) = 5.57,

MSE = .003, p < .05. This difference did not reach significance for the decreasing set

(p = .14). With regard to the low-frequency words, we observed a similar significant reduc-

tion of SSE over time for the increasing set, F(1, 19) = 89.5, MSE = .009, p < .001 and the

stable set, F(1, 19) = 12.8, MSE = .002, p < .01, and, in this case, also for the decreasing

set, F(1, 19) = 4.5, MSE = .0005, p < .05.

7.3. Discussion of Simulation 3

The findings from Simulation 3 can be summarized as follows. With high training fre-

quencies, the network became entrenched after Time 1. Performance on the decreasing and

stable sets was good after Time 1 and these sets remained well learned after the following

two Times 2 and 3. In contrast, the increasing set (the late set in this simulation) benefitted

very little from the increase in frequency of occurrence across Times 2 and 3. As far as the

lower frequencies are concerned, the decreasing set was again well-learned at Time 1 and

this learning persisted over the next two periods (Times 2 and 3). The stable set was rather

less well learned at Time 1 and did not change much across Times 2 and 3. The level of

learning on the increasing set was only marginal between the end of Time 1 through to the

end of Time 3. As was the case for Simulations 1 and 2, the analysis of FT effects over time

revealed a significant reduction in errors on both the increasing and stable, as well as on the

decreasing set. Thus, the effect of FT seems to be greater for LF items than for HF items

(because a type of ceiling effect occurs for HF words).

Focusing on frequency trajectory effects, both high-frequency and low-frequency items

showed age-limited learning effects. However, as reported by Lambon Ralph and Ehsan

(2006) for AoA, the FT effect was more specific to low-frequency than high-frequency

items, thus resulting in a significant interaction between FT and cumulative frequency.

Our current findings suggest that this interaction is probably due to an overtraining on
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high-frequency items, which results in an absence of any difference between the AoA

effects on accuracy induced by stable FT, on the one hand, and decreasing FT, on the other.

These computational results lead to new behavioral hypotheses, and we might expect a simi-

lar absence of difference between stable and decreasing FT in humans. Moreover, we have

to note that the interaction, albeit significant, was very weak. This might explain the contro-

versial results previously reported in the literature (Barry et al., 1997; Chalard et al., 2003;

Cuetos et al., 2006; Lambon Ralph & Ehsan, 2006; Meschyan & Hernandez, 2002).

8. General discussion

Our starting point was that any theory of lexical processing in adults has to account not

only for the factors which determine the speed and accuracy of lexical processing but also

the reasons why these factors are thought to be influential. This issue has been debated at

length in the psycholinguistic literature, in particular with regard to the influence of the

frequency with which words are encountered and their age of acquisition. As the measures

corresponding to these two factors are correlated, there has been some controversy about

whether the two factors have a genuine influence (e.g., Barry et al., 1997). A very large

number of studies have reported an influence of the age of acquisition of words in a wide

variety of lexical tasks (Johnston & Barry, 2006; Juhasz, 2005 for reviews). As a result,

some researchers have claimed that AoA has a universal influence in lexical processing

(e.g., Raman, 2006). The key assumption behind the AoA hypothesis is that the order in

which words are acquired has a direct influence on lexical processing speed and accuracy in

mature cognitive systems. Therefore, based on the extensive modeling undertaken by Ellis

and Lambon Ralph (2000), Lambon Ralph and Ehsan (2006), Monaghan and Ellis (2010),

and Zevin and Seidenberg (2002), connectionist simulations have been used to provide evi-

dence for an explicit theoretical account of why the order of acquisition of the items per se

has a long-lasting influence.

Following previous studies (Bonin et al., 2009; Ellis & Lambon Ralph, 2000; Lambon

Ralph & Ehsan, 2006; Zevin & Seidenberg, 2002, 2004), a connectionist theory has been

put forward to account for age-limited learning effects in mature cognitive systems. Within

this connectionist framework, AoA is explained by the reduction of synaptic plasticity in

previously trained artificial neural systems. This theory makes explicit statements regard-

ing the influence of AoA, cumulative frequency, and frequency trajectory in lexical pro-

cessing. According to this theory, the frequency trajectory of items is an important

underlying factor determining the age ⁄ order of acquisition of words (Bonin et al., 2004,

2009; Zevin & Seidenberg, 2002), as well as the speed and accuracy of processing of

items. This is especially true in the case of tasks that require the use of arbitrary mappings,

such as object and face naming tasks which demand the mobilization of semantic-to-lexical

mappings. Connectionist data suggest that, when input ⁄ output relationship are arbitrary,

the more often and earlier an individual is exposed to a word, the better the corresponding

representations formed by the cognitive system will be. The basic idea underlying FT the-

ory is therefore to replace a discrete, one-dimensional coding of the AoA variable by a
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continuous, two-dimensional variable, which takes account of the amount of exposure to

encounters over time. Frequency trajectory can thus be used to investigate age-limited

learning effects in lexical processing (from word reading to object ⁄ face-naming tasks).

According to this theory, the influence of frequency trajectory on a mature cognitive sys-

tem is confined to the specific cases where learning about certain items cannot be general-

ized to new items (when specific links between input and output patterns have to be

learned). As suggested by Zevin and Seidenberg (2002), when generalization is possible,

as in the case of items having systematic or quasi-systematic mappings (i.e., the links

involved in word reading or spelling-to-dictation in alphabetic languages), the frequency

trajectory of the items has relatively little impact on the mature performance of the net-

work. However, it is worth remembering that Zevin and Seidenberg (2002) did not investi-

gate the effect of FT on arbitrary relationships (the links involved in object or face

naming) and that their findings therefore provide little evidence of the effect of FT as arbi-

trary relations have been shown to be the most sensitive to AoA effects (Lambon Ralph &

Ehsan, 2006). This might account for why FT has not been investigated more enthusiasti-

cally in subsequent empirical studies (Bonin et al., 2009). However, in accordance with

the theoretical framework proposed by Zevin and Seidenberg (2002), our simulations make

clear (a) that when items with arbitrary mappings have to be learned, these items become

entrenched as a result of early learning and later learning exerts only little influence, thus

resulting in clear AoA effects, but also (b) that FT and order or acquisition (as operational-

ized in Lambon Ralph & Ehsan, 2006) can be considered different points along one and

the same continuum. Below, we shall address the more fundamental issues relating to the

meaning of age-of-acquisition effects. Importantly, this theory has also been confirmed by

a small number of behavioral studies (Bonin et al., 2004; Izura et al., 2011; Stewart &

Ellis, 2008; Zevin & Seidenberg, 2004) and it is to be hoped that the current theoretical

and computational support for the use of FT will encourage more extensive research within

this theoretical framework. At a behavioral level, this raises the question of the status of

subjective AoA measures that might actually constitute a performance variable which has

to be accounted for. The computational findings reported here clearly show that FT is a

reliable candidate that provides more informative data, making it possible to account for

the AoA effect observed in psychological data.

At a behavioral level, Zevin and Seidenberg (2002) have suggested that the age of acqui-

sition of the items is an outcome variable to be accounted for rather than a factor which

itself has an influence on the ease with which the patterns are learned. Items that are encoun-

tered more frequently during an earlier period of acquisition are learned first (Bonin et al.,

2004; Hazard, De Cara, & Chanquoy, 2008; Zevin & Seidenberg, 2002) and therefore deter-

mine the age of acquisition of the items, as currently recorded at the behavioral level. It will

be necessary to resolve this debate at the behavioral level (Bonin et al., 2009). At a theoreti-

cal level, our aim here was to assist in the development of a unified theoretical framework

by drawing on the methodological and theoretical strengths of both approaches. We are fully

aware of the importance and the theoretical existence of the order of acquisition of items

(the time at which a specific word is encoded in the cognitive system), even though this

measure has proved to be difficult to record in humans and has given rise to some debate
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(Bonin et al., 2004, 2009). However, FT theory represents a step forward in that it provides

a more precise way to address the question of age-limited learning effects by taking account

of the continuous amount of exposure resulting from the encounters. Similarly, this theory

makes it possible to address the effects on the behavior of a mature network that is still

learning by making use of the same principles as previously applied, namely (a) when the

items are learned, (b) how often the network is exposed to them, and (c) as a function of the

types of mapping between these items. These different aspects have not previously been

addressed within one and the same study.

Following the original formulations of the AoA hypothesis––which did not include the

concept of frequency trajectory––and the subsequent connectionist implementation by Lam-

bon Ralph and Ehsan (2006)––which did not make any explicit reference to it––Lambon

Ralph and Ehsan (2006) reported that the type of mapping between different representations

(arbitrary vs. componential) interacted with the order of introduction of the patterns in the

training session. More precisely, these simulations showed that patterns introduced early in

training and complemented by later patterns which were trained alongside them in a cumu-

lative and interleaved manner were recognized better than late patterns introduced at the

end of learning. In this study, we investigated the possibility that FT theory is able to

account for these differential age-limited learning effects. As in Lambon Ralph and Ehsan

(2006), the type of relationships between input and output units was also manipulated (Sim-

ulations 1, 2, and 3) in order to show that frequency trajectory is a useful additional parame-

ter that can help explain the results obtained when the order of introduction of the

encounters is manipulated. One aspect of this study worth stressing is that we included items

with a stable frequency trajectory. As shown by Zevin and Seidenberg (2002), the inclusion

of this baseline is important because (a) it permits us to gain a more accurate understanding

of the true influence of decreasing or increasing frequency trajectories on network perfor-

mance, and more importantly, and (b) the stable trajectory represents a more natural case of

the words that are encountered early when learning a language. As reviewed in the Introduc-

tion, the correlation between child and adult frequencies in American-English is very high,

meaning that the words that children are exposed to at an early age retain their frequency

later in life. Finally, in Simulation 3, the combined influence of frequency trajectory and

cumulative frequency in the presence of arbitrary mappings was investigated. A simple

three-layer feedforward model––the same as the one used by both Ellis and Lambon Ralph

(2000) and Lambon Ralph and Ehsan (2006)––was trained on sets of patterns with different

frequency trajectories. As had already been shown by Lambon Ralph and Ehsan (2006) on

the basis of the order of acquisition of the items, the age-limited learning effects provided

by FT varied as a function of the type of mapping. Simulations 1, 2, and, 3 revealed that fre-

quency trajectory had a reliable influence on AoA effects, when arbitrary mappings, but not

quasi-systematic or systematic mappings, were used. Therefore, age-limited influences were

found to be related to the type of learning that takes place between different kinds of repre-

sentations. This study makes it clear that when the mappings between input and output units

are not predictable, or in other words when the relationships between codes are arbitrary,

the links that are formed by the network become entrenched as a result of early experience.

Later experience and variations in the word frequencies involved in the learning regime do
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little to change them. The learning in our network was clearly dominated by the phenomena

of entrenchment and loss of plasticity (see below for a more extensive discussion), irrespec-

tive of the high or low cumulative frequency of the items. Thus, when the items to be

learned are unpredictable, individual links have to be memorized and age-limited learning

effects are expected to have a long-lasting influence. In contrast, when the items to be

learned are more predictable (or clearly predictable) and the relationships are systematic or

quasi-systematic; that is to say, when generalization is possible, variations in the frequency

of exposure to them over time have an impact on networks. However, even in this case, fre-

quencies can decline over time without affecting quality of representation (as shown by the

performance on the early items in Simulations 2A and 2B).

8.1. Implications and future directions for research

Over the last 10 years, a number of simulations based on the AoA hypothesis have been

run in an attempt to account for age-of-acquisition effects in terms of age-dependent reduc-

tions in plasticity (Ellis & Lambon Ralph, 2000; Lambon Ralph & Ehsan, 2006; Zevin &

Seidenberg, 2002). Ellis and Lambon Ralph (2000) have suggested that there is an explicit

link between age-limited learning effects and neural network plasticity. We fully agree with

the hypothesis that a reduction in neural plasticity can account for age-limited learning

effects. Indeed, we have shown, on the basis of the current connectionist simulations, that

the same neurally inspired processes constitute the theoretical underpinning of FT theory

and have demonstrated, we believe for the first time, that FT could produce reliable and

stable AoA effects in simulations of ‘‘picture naming-like’’ tasks. Moreover, we have

shown that FT permits a modulation of the responses of the neural network, which is not

present if only the order of introduction of the encounters is considered. This comparison

between AoA and FT raises a more fundamental question about AoA. As shown in these

simulations, we can modulate the order of acquisition in terms of ‘‘early’’ and ‘‘late’’ pat-

terns as Ellis and Lambon Ralph (2000) and Lambon Ralph and Ehsan (2006) have done

and show that these situations represent a formal equivalent to extreme cases of FT. How-

ever, in this computational framework, it is more difficult to define the notion of age of
acquisition. Connectionist simulations clearly show that the acquisition of items in an artifi-

cial neural network (as well as in infants) is a continuous, and not a discrete, process. It is

possible to determine the period during which we were exposed to a word, but it is more dif-

ficult to pinpoint when it was acquired. In this study, for example, we had to decide what

threshold to adopt to decide if the input–output associations for a specific word were suffi-

ciently reliable for it to be considered ‘‘acquired.’’ However, one key question that has to

be answered is what does it mean to define a word as ‘‘acquired’’ or ‘‘not acquired?’’ Is a

single exposure to a word sufficient to define the word as acquired? Is a single production of

a word sufficient to define the word as acquired? Does the acquisition of a word require a

certain level of accuracy in its production? If such a level is required, we are entitled to ask

what that level is and what dimensions are involved (semantic representations, phonologi-

cal ⁄ orthographic representations, all of these)? We assume here that the earlier debate about

whether AoA measures constitute an independent or a dependent variable may, in part, be
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related to this problem and suggest that FT might constitute a more precise (because modu-

lated) and more objective independent variable. We therefore strongly recommend record-

ing this measure to construct databases that will be useful for future psycholinguistic

research.

A more specific question that may be raised is why is there a reduction in neural plasticity
in the systems that we are studying? Neural plasticity can be modulated in artificial neural

networks to produce strong a ‘‘entrenchment’’ effect at one extreme of the continuum (i.e.,

when the neural network has very low plasticity ⁄ high stability) and catastrophic forgetting

at the other end (i.e., when the neural network has very high plasticity ⁄ low stability).2 This

question will have to carefully addressed in future research in neural modeling. It should be

remembered that in the Ellis and Lambon Ralph (2000) simulations, catastrophic interfer-

ence was observed on the early items when these were entirely replaced by the later items

during learning by the network. Could the reduction in neural plasticity be a consequence of

the particular frequency that we used? That is to say, if had we used frequency trajectories

other than those employed here, for example, with each word appearing in only one time

block but neither before nor after it, might we have observed very different learning out-

comes? If this scenario, which is based on Ellis and Lambon Ralph’s (2000) findings, were

indeed the case, then a reasonable prediction would be that later acquired items erase earlier

acquired items, as can be seen in the catastrophic interference phenomenon (French, 1999

and below). Although this is clearly an interesting issue, it is very rare, when learning words

in a given language, to find that the words to which we have been exposed over a period of

time suddenly cease to occur in the language in question (except for a small number of

words which become completely obsolete). However, one interesting natural social situation

is that of adopted children who have learned a language for a period of their lives and been

exposed to the words it contains, and then cease to be exposed to these words when they

move to a different country. Pallier et al. (2003) attempted to reveal native language traces

in eight adult Koreans who had been adopted during childhood (between 3 and 8 years of

age) by French families. These individuals had been completely cut off from and not reex-

posed to Korean since their arrival in France (15–20 years prior to testing). At the subjective

level, these adults claimed to have no knowledge of their mother tongue. The performances

in different linguistic tasks (sentence identification in Korean versus different languages,

word recognition, and fragment detection) of the Korean adoptees and a control group con-

sisting of native French speakers were compared and no reliable differences were found

between the groups. Functional magnetic resonance imaging (fMRI) was also used to moni-

tor brain activations while the adults were listening to sentences in French, Korean, and two

other unknown languages. None of the adoptees exhibited activation specifically in response

to Korean compared with the unknown languages. Moreover, their pattern of activation in

response to French sentences was quite similar to that of the native French speakers. Thus,

it would seem that early exposure to a language is not enough to leave permanent traces in

the brain (see also Ventureyra, Pallier, & Yoo, 2004). Re-exposure to the language is neces-

sary to maintain the stored representation, as otherwise ‘‘naturalistic’’ catastrophic interfer-

ence is observed. These behavioral findings fit nicely with what has been observed at a

computational level by Ellis and Lambon Ralph (2000). These authors examined the case of
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items acquired early by the connectionist network before suddenly ceasing to be presented

to the network, as in the case of certain real words that appear primarily in nursery rhymes

or children’s stories. Except among adults who themselves look after children, the frequency

of such words will be lower in adulthood than it was in early childhood. The simulations

performed by Ellis and Lambon Ralph (2000) showed that once an early set of patterns has

been well learned by the network, a frequency of presentation that is greatly reduced from

the original level is enough to maintain the quality of the representations. It was only when

the early patterns ceased to be trained at all that representations in the studied network suf-

fered and catastrophic interference was observed on these items. It should be noted that the

conditions that give rise to catastrophic interference in neural networks (see French, 1999

for further discussion) rarely occur in learning in humans because in real life (French,

1999), the learning experiences consist of items that are interleaved, as in the learning of

objects and their names, letters, and their sounds, and so on. As shown by Hetherington and

Seidenberg (1989), relearning occurs even with neural networks that exhibit catastrophic

interference, a finding which indicates that initial or early acquisitions are not completely

erased. Thus, a prediction in humans that was recently confirmed by Bowers, Mattys, and

Gage (2009) is that individuals who cease to be exposed to a language they knew in their

childhood are able to (re-)learn this language more easily than individuals who have never

learned the language in question.

Is reduced plasticity a feature of biological systems? As far as language acquisition is

concerned, the reduction in plasticity reflects the idea that there is a critical period of age

during which exposure to language must take place in order for language to be acquired

normally. This is referred to as the critical period hypothesis (Seidenberg & Zevin, 2006).

This period is thought to be followed by subsequent restrictions of the ability to learn in

the form of a loss of plasticity. However, evidence for such restrictions to language learn-

ing capabilities after a putative critical period remains controversial, even though it seems

that language learning is indeed age dependent. What could be responsible for this loss of

plasticity in learning? At the biological level, there are candidates for intrinsic changes to

neural networks that may limit plasticity: synaptic pruning, changes in the number and dis-

tribution of neurotransmitter receptors, and the maturation of inhibition. Importantly, simu-

lation studies (including ours) strongly suggest that learning itself plays a role in the

reduction of plasticity. However, apart from the computational evidence, other evidence in

favor of this hypothesis takes the form of song learning in zebra finches (Zevin, Seiden-

berg, & Bottjer, 2004). Zebra finches typically learn song during a sensitive period that

closes early in adulthood after which new song elements are not added and existing ele-

ments are not lost. However, they exhibit plasticity beyond the end of the sensitive period

that can be extended by altering the bird’s experience. Zevin et al. (2004) went on to show

that when white noise was used to prevent adult birds from hearing their own songs (with-

out damaging their hearing), there was a negative impact on the birds’ songs. This evi-

dence is entirely consistent with the computational approach and indicates that continued

exposure to the bird’s own song is necessary for the maintenance of the bird’s capabilities.

However, when the noise was discontinued, even though the birds were not able to learn

from exposure to a tutor (which suggests a limitation to plasticity), song did change over
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time in response to auditory feedback, thus suggesting a continued capacity to learn.

According to Seidenberg and Zevin (2006), the acquisition and gradual entrenchment of

representations that support stereotyped song become increasingly resistant to change as a

result of the process of learning itself. Thus, the reduction of plasticity due to learning in

neurally inspired networks is clearly compatible with evidence revealed by learning in bio-

logical systems. Finally, as far as language is concerned, the loss of plasticity is not nega-

tive in nature as the knowledge that is acquired is established in a way that allows

generalization. On the contrary, this loss can be thought of as a positive adaptive feature.

Importantly, and as pointed out explicitly by Seidenberg and Zevin (2006), when unpre-

dictable facts, such as the correspondence between objects and their names, are learned,

that is, in cases where age-limited learning effects are most frequently observed, these

effects differ from those associated with critical periods in two respects. First of all, age-

limited learning effects concern particular items rather than systematic aspects of knowl-

edge and, second, the conditions that give rise to these effects do not lead to the failure to

acquire new items. This contrasts with the case of critical periods, which result in the

inability to acquire, generalizable, systematic knowledge. According to these authors, and

in contrast to the standard view, the process of learning creates neurobiological changes
that reduce plasticity. Whether a critical period truly exists for language acquisition, the

loss of plasticity is a phenomenon that should not to be equated with critical periods.

To conclude, this study represents a valuable contribution because it provides clear compu-

tational support for the idea that frequency trajectory is a valuable way of addressing the issue

of age-limited learning effects due to the fact that frequency trajectory makes it possible to

take account explicitly of both the order of introduction of the items during learning and their

exposure levels over the entire acquisition process. It should therefore permit a more precise

modulation of AoA effects than order of acquisition in future studies involving naming tasks.
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Notes

1. It can be argued that not only AoA but also word frequency is an ‘‘output variable,’’ which

has effects because it ‘‘stands for’’ other factors. As we have argued in Bonin et al.

(2009), the empirical measures of word AoAs, that is, ‘‘objective-’’ or subjective-rated

AoA norms, are characterized as a behavioral outcomes because the way they are
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measured depends directly on the participants’ performance (naming accuracy in chil-

dren and ratings in adults), whereas word frequency is derived from the analyses of cor-

pora: It is the number of times a word is found in a corpus. It might also be thought that the

order of acquisition of the words and their frequency of use could exert more direct effects

on lexical processing, irrespective of the factors that cause variations in AoA and fre-

quency.

2. We thank an anonymous reviewer for having brought this to our attention.
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