Persistence of mental fatigue on motor control

Category

Journal Article

Authors

Jacquet, T., Poulin-Charronnat, B., Bard, P., Lepers, R.

Year

2021

Title

Persistence of mental fatigue on motor control

Journal / book / conference

Frontiers in Psychology

Abstract

The effects of mental fatigue on both cognitive and physical performance are well described in the literature, but the recovery aspects of mental fatigue have been less investigated. The present study aimed to fill this gap by examining the persistence of mental fatigue on behavior and electrophysiological mechanisms. Fifteen participants performed an arm-pointing task consisting of reaching a target as fast as possible, before carrying out a 32-min cognitively demanding task [Time Load Dual Back (TLDB) task], and immediately, 10 and 20 min after completion of the TLDB task. During the experiment, electroencephalography was continuously recorded. The significant increase in mental fatigue feeling after the TLDB task was followed by a decrease during the 20 min of recovery without returning to premeasurement values. Brain oscillations recorded at rest during the recovery period showed an increase in both theta and alpha power over time, suggesting a persistence of mental fatigue. Arm-pointing movement duration increased gradually over time during the recovery period, indicating that behavioral performance remained impaired 20 min after the end of the cognitively demanding task. To conclude, subjective measurements indicated a partial recovery of mental fatigue following a cognitively demanding task, whereas electrophysiological and behavioral markers suggested that the effects of mental fatigue persisted for at least 20 min. While the subjective evaluation of mental fatigue is a very practical way to attest the presence of mental fatigue, electrophysiological and behavioral measures seem more relevant to evaluate the time course of mental fatigue effects.

Keywords

cognitive fatigue, recovery effect, electroencephalography (EEG), brain oscillations, event-related potentials, Fitts’ law, arm-pointing task

Download

Download this publication in PDF format

‹ Back